Genialny wzór Taylora - czyli o informacji zakodowanej w pochodnych

"Co to jest różniczka? - zapytano  matematyka.
Różniczka to wyniczek odejmowanka - odpowiedział"
🙂

Wzór Taylora to jeden z elementów, które stanowią esencję rachunku różniczkowego i całkowego. Oto, w magiczny sposób, na bazie sekwencji informacji o funkcji, dotyczących tylko jednego jej wybranego punktu, możliwe jest bardzo precyzyjne odtworzenie zmienności funkcji w pobliżu ustalonego punktu. Wzór Taylora, nazywamy często rozwinięciem Taylora funkcji f(x) w otoczeniu punktu x_0, faktycznie "rozwija" funkcję do postaci sumy funkcji elementarnych a_n(x-x_0)^n, stanowiących atomy wielomianów. W efekcie otrzymujemy nie tylko efektywną aproksymację wartości funkcji, ale również nową "łatwiejszą" jej formę.

Wielomian Taylora

Twierdzenie Taylora: Dla funkcji f:\mathbb{R}\to\mathbb{R} n-razy różniczkowalnej (n\geq 1) w punkcie x_0\in\mathbb{R}, istnieje funkcja h_n:\mathbb{R}\to\mathbb{R}, że

f(x)=\underbrace{\displaystyle\sum_{k=0}^n\frac{f^{(k)}(x_0)}{k!}(x-x_0)^k}_{wielomian-aproksymacja~f(x)}+\underbrace{h_n(x)(x-x_0)^n}_{reszta}

f(x)=f(x_0)+\frac{f^{(1)}(x_0)}{1!}(x-x_0)^1+\frac{f^{(2)}(x_0)}{2!}(x-x_0)^2+\ldots

\ldots+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n+h_n(x)(x-x_0)^n

oraz

\displaystyle\lim_{x\to x_0}h_n(x)=0

Przez f^{(k)}(x) oznaczamy pochodną rzędu k funkcji f(x).

Twierdzenie Taylora nosi nazwę od angielskiego matematyka Brooka Taylora, który opracował je w 1712 roku. Samą własność wcześniej odkrył James Gregory - dokonał tego w 1671 roku.

Czytaj dalej

Karl Weierstrass i Funkcja Weierstrassa - czyli geometria fraktalna (część 2)

Karl Weierstrass - źródło Wikipedia: https://pl.wikipedia.org/wiki/Karl_Weierstrass

Karl Theodor Wilhelm Weierstrass (1815 - 1897) niemiecki matematyk uznawany za "ojca współczesnej analizy matematycznej". Choć minęło już 17 lat, to nadal doskonale pamiętam pierwszy semestr studiów matematycznych i ekspozycję na podstawowe "bardziej abstrakcyjne" twierdzenia, w tym Twierdzenie Bolzano-Weierstrassa. Twierdzenie mówi, że "każdy rzeczywisty ciąg ograniczony zawiera podciąg zbieżny", i choć brzmi prosto i ogólnie, jest niezwykle przydatnym narzędziem dowodzenia innych wyników metodą nie-wprost (zgodnie ze schematem "załóżmy, że ... wtedy istnieje ciąg ograniczony, że ..., wtedy istnieje podciąg zbieżny, że ..., i z własności ... wynika sprzeczność z założeniem"). Pięknie to (i nie tylko to) wykładał Pan Prof. Dr Hab. Tadeusz Rzeżuchowski - wielkie dzięki Panie Profesorze!

Funkcja Weierstrassa

Większość matematyków z okresu XVIII i XIX wieku uważało, że wszystkie rzeczywiste funkcje ciągłe są różniczkowalne w znaczącej części swej dziedziny (poza zbiorem izolowanych punktów). Dosyć naturalny pogląd okazał się jednak fałszywy, co wykazał Weierstrass w 1872 roku, a wcześniej podejrzewali Bernhard Riemann oraz Bernard Bolzano (prawdopodobnie w roku 1830 Bolzano podał kontrprzykład, którego nie opublikował). Funkcja Weierstrassa jest przykładem rzeczywistej funkcji ciągłej nieróżniczkowalnej w całej dziedzinie (tzn. nie istnieje ani jeden punkt dziedziny, w otoczeniu którego funkcja zachowuje się "normalnie" - np. monotonicznie). Własność nietypowa, a nawet patologiczna! Jednak nie dla fraktali, zatem i nie dla otaczającej nas natury (analogia do nieintuicyjnej mechaniki kwantowej zaskakująco precyzyjnie opisującej rzeczywistość).

{\Large f(x)=\displaystyle\sum_{n=0}^\infty a^n\cos(b^n\pi x)}

gdzie

{\large 0<a<1\qquad ab>1+\frac{3}{2}\pi}

Warto zauważyć, że funkcję Weierstrassa można zapisać w postaci analitycznej (w uproszczeniu - podając wzór).

Funkcja Weierstrassa i fraktale

Poniżej wykres funkcji Weierstrassa na przedziale [-2; 2].

Funkcja Weierstrassa - By Eeyore22 (Own work) [Public domain], via Wikimedia Commons

Benoit Mandelbrot mawiał, że "fraktal to zbiór matematyczny (lub inny obiekt ) charakteryzujący się w każdej skali wysoką nieregularnością oraz dużą fragmentacją." W części pierwszej cyklu o "geometrii fraktalnej"odnosząc się do słów Mandelbrota, pisałem, że cechą fraktalną jest nietrywialna struktura obiektu w każdej skali - tzn. powiększanie ujawnia kolejne równie skomplikowane formy. Wspomniałem również o samo-podobieństwie - tzn. sytuacji, gdy w skład obiektu wchodzą jego "mniejsze" kopie. Wykres funkcji Weierstrassa zdaje się spełniać te kryteria - był to pierwszy odkryty fraktal!

Karl Weierstrass - ciekawostki

Weierstrass wykładał w Wałczu oraz w Braniewie. Wikipedia wymienia, że jego uczniami byli: Georg Cantor, Otto Holder, Georg Frobenius, Felix Klein, Hermann Minkowski.

 

Pozdrowienia,

Mariusz Gromada

Przeciwieństwo nieskończoności, Wielkość nieskończenie mała, Wielkość infinitezymalna, Różniczka, Monada, Infinitesimal, Differential - czyli początki rachunku różniczkowego i całkowego

Wielkość nieskończenie mała - Pole koła

Wielkość nieskończenie - geneza powstania

W 17 wieku Newton i Leibniz skonstruowali podstawy rachunku różniczkowego i całkowego. Ich logika opierała się na wykorzystaniu wielkości nieskończenie małej w celu wyznaczenia powierzchni pod krzywą daną równaniem funkcji. Podejście to zakładało istnienie niezerowego elementu nieskończenie małego. Filozof Leibniz poszedł dalej, gdyż ponadto uważał, że cały świat jest zbudowany z tzw. monad, czyli z substancji, które nie mają żadnej postaci, ponieważ są niepodzielne, nie mogą być ani wytworzone ani unicestwione.

Jeszcze przed naszą erą Grecy z sukcesem stosowali metodę wyczerpywania do wyznaczenia pól powierzchni figur geometrycznych. Metoda ta wykorzystywała granice, nie wykorzystywała natomiast wielkości nieskończenie małej. Jednak z metody wyczerpywania wyrosła zasada Cavalieriego, odkryta przez Archimedesa, służąca do wyznaczania objętości brył, która opierała się na argumentacji wielkości niepodzielnej.

Wielkość nieskończenie mała a skala Plancka

Intuicja podpowiada, że wielkość nieskończenie mała powinna być ekstremalnie mała, ale o niezerowym rozmiarze. W świecie praktycznym byłaby to np. wielkość mniejsza od najmniejszej teoretycznie możliwej wielkości do zmierzenia. Np. skala Plancka w fizyce dostarcza teoretycznej granicy pomiaru - nie ma możliwości skonstruowania przyrządu pomiarowego z błędem mniejszym niż skala Plancka, co nie oznacza, że poniżej skali Plancka nic nie istnieje.

Wielkość nieskończenie mała - cykl filmów od Numberphile

Numberphile logo Zapraszam do ciekawego cyklu filmów przygotowanych przez Numberphile na temat wielkości nieskończenie małych.

I na koniec jeszcze ciekawostka od MinutePhysics - Proof Without Words: The Circle.

Pozdrowienia,

Mariusz Gromada