Liczba e ukryta w sumie rozkładów jednostajnych

Rozkład jednostajny na odcinku (0,1), chyba najprostszy z możliwych rozkładów ciągłych, z pozoru niezbyt interesujący, a jednak 🙂 Dziś ciekawostka wiążąca rozkład sumy rozkładów jednostajnych z liczbą Eulera e.

Uniform Sum Distribution

Rozkład jednostajny ciągły na odcinku (a,b)

Rozkład jednostajny ciągły na odcinku (a,b) jest opisany poniższą funkcją gęstości.

f(x)=\begin{cases}\frac{1}{b-a}&&\text{dla }a\leq x\leq b\\0&&\text{w p.p.}\end{cases}

Pisząc X\sim U(a,b) oznaczamy, że zmienna losowa X ma rozkład jednostajny ciągły na odcinku (a,b). Jest to rozkład ciągły, zatem przyjęcie wartości 0 lub \frac{1}{b-a} w punktach x=a i x=b jest umowne i nie ma zwykle wpływu na własności i rozważania.

Czytaj dalej

Matematyka w obrazkach #20 - Optimus Prime

W nawiązaniu do liczb pierwszych, którym poświęcony był wczorajszy wpis "Liczba π ukryta w liczbach pierwszych", prezentuję postać z uniwersum Transfomers. Szanowni Czytelnicy - w cyklu "Matematyka w obrazkach" - "Jego Królewska Mość" - Optimus Prime - przywódca Autobotów 🙂

Optimus Prime Numbers

Pozdrowienia 🙂

Mariusz Gromada

Liczba π (Pi) ukryta w liczbach pierwszych

Liczba \pi ukryta w liczbach pierwszych? Jak to możliwe? Przecież liczby pierwsze to "chaos", a \pi ma ścisły związek z najbardziej regularnym obiektem geometrycznym - tzn. z okręgiem / kołem.

Prime Pi

Czym jest \pi?

  • \pi to stosunek obwodu koła do jego średnicy.
  • \pi to pole powierzchni koła o promieniu 1.
  • \pi to połowa obwodu koła o promieniu 1.
  • \pi to \frac{1}{4} pola powierzchni sfery o promieniu 1.
  • \pi to \frac{3}{4} objętości kuli o promieniu 1.
  • k\pi dla całkowitych k to miejsca zerowe funkcji \sin x.
  • ... i wiele innych ...

Czym są liczby pierwsze?

  • Liczba pierwsza to liczba naturalna n\in\mathbb{N} większa od 1, której jednymi dzielnikami są 1 oraz n.
  • Liczby pierwsze to "atomy" w teorii liczb, tzn. każdą liczbę naturalną można rozłożyć na iloczyn liczb pierwszych.
  • Rozmieszczenie liczb pierwszych wśród liczb naturalnych spełnia pewne zależności statystyczne, jednak nie jest znany żaden precyzyjny wzór dla określenia n-tej liczby pierwszej. Ciekawskich odsyłam do artykułu "Prime-counting function".

Czytaj dalej

Matematyka w obrazkach #19 - Oko Mandelbrota

W cyklu "Matematyka w obrazkach" - nowe logo MathSpace.pl

Motywacja

Motywując postać nowego logo przytoczę cytaty, którymi posłużyłem się otwierając serię o "Geometrii fraktalnej" - wpis "Fraktalne oblicze natury".

"Geometria fraktalna sprawi, że inaczej spojrzysz na świat. Ostrzegam - zgłębianie tej wiedzy wiąże się z niebezpieczeństwem. Ryzykujesz utratę części wyobrażeń z dzieciństwa - szczególnie tych dotyczących chmur, lasów, kwiatów, galaktyk, liści, piór, skał, gór, potoków, i wielu innych. Twoja interpretacja przyrody zmieni się całkowicie i na zawsze."

Michael F. Barnsley

 

"W kwestii fraktali zobaczyć znaczy uwierzyć"

Benoit Mandelbrot

 

Pozdrowienia,

Mariusz Gromada

Tetracja i nieskończona wieża wykładnicza

Tetracja - definicja

Tetracja (wieża wykładnicza, super-potęgowanie, iterowane potęgowanie, 4 hiper-operator)

Tetracja to działanie dwuargumentowe definiowane jako wielokrotne potęgowanie elementu przez siebie.

Definicja: dla dowolnej liczby rzeczywistej a>0 i nieujemnej liczby całkowitej n\geq 0 tetrację n liczby a definiujemy jako:

{^{n}a}=\begin{cases}1&\text{dla}\quad n=0\\a&\text{dla}\quad n=1\\ \underbrace{a^{a^{\cdots^{a}}}}_{n}&\text{dla}\quad n>1\end{cases}

Przykłady

{^{3}2}=2^{2^2}=2^{(2^2)}=2^4=16

{^{4}2}=2^{2^{2^2}}=2^{(2^{(2^2)})}=2^{(2^{4})}=2^{16}=65536

{^{3}3}=3^{3^3}=3^{(3^3)}=3^{27}=7625597484987

{^{4}3}=3^{3^{3^3}}=3^{(3^{(3^3)})}=3^{(3^{27})}=3^{7625597484987}=\ldots liczba składająca się z 3638334640025 cyfr 🙂

Tetrację można wykorzystać do zapisu naprawdę dużych liczb, co dobrze obrazuje przykład {^{4}3}. Tetrację wygodnie jest również definiować w postaci rekurencyjnej.

Definicja rekurencyjna: dla dowolnej liczby rzeczywistej a>0 i nieujemnej liczby całkowitej n\geq 0 tetrację n liczby a definiujemy jako:

{^{n}a}=\begin{cases}1&\text{dla}\quad n=0\\a^{{^{n-1}a}}&\text{dla}\quad n\geq 1\end{cases}

Czytaj dalej

Matematyka w obrazkach #17 - Pitagoras vs Einstein

Po dłuższej przerwie zaczynam od czegoś lekkiego - dziś w cyklu "Matematyka w obrazkach" pojedynek geometrii euklidesowej ze szczególną teorią względności 🙂

Pitagoras vs Einstein

Ciekawostki o pewnych równoważnościach:

  • Twierdzenie Pitagorasa jest równoważne z V aksjomatem geometrii euklidesowej, (tzw. Postulatem Euklidesa, inaczej postulatem równoległości).
  • E=mc^2 wywodzi się ze szczególnej teorii względności opracowanej przez Alberta Einsteina przedstawiając dwa różne typy równoważności masy i energii:
    • Równoważność masy spoczynkowej i energii spoczynkowej.
    • Równoważność masy relatywistycznej i energii całkowitej.
  • Ogólna teoria względności jest uogólnieniem szczególnej teorii względności. Korzysta ona między innymi z metod geometrii nieeuklidesowej (np. stwierdzenie, że siła grawitacji wynika z lokalnej geometrii czasoprzestrzeni). Zatem, w pewnym sensie, powyższy pojedynek to starcie między geometrią euklidesową a geometrią nieeuklidesową 🙂

Pozdrowienia,

Mariusz Gromada

Matematyka w obrazkach #16 - Mathistopheles - Atraktor Lorenza :-)

Dziś, przeglądając Twittera, natknąłem się na profil @Mathistopheles - Thomas Oléron Evans. Zdjęcie profilowe jest genialne - wykonane na bazie Atraktora Lorenza - musiałem dodać do cyklu "Matematyka w obrazkach" 🙂 Równie ciekawe jest zdjęcie w tle 🙂

Atraktor Lorenza

Pozdrowienia,

Mariusz Gromada