Georg Cantor i trójkowy zbiór Cantora - czyli geometria fraktalna (część 3)

Georg Cantor - źródło Wikipedia.org

Georg Ferdinand Ludwig Philipp Cantor (1845 - 1918) - niemiecki matematyk, który zainicjował (oraz znacząco rozwinął) teorię mnogości. Można powiedzieć, że "Cantor dla teorii mnogości jest tym, kim Mandelbrot dla geometrii fraktalnej". Cantora osobiście zaliczam do grona gigantów matematyki, których koncepcje i wyniki prac znacząco wyprzedzały daną epokę. Cantor jako pierwszy zadał pytanie o rozmiar nieskończoności. Wprawdzie w 17 wieku Newton i Leibniz stosowali pojęcie wielkości nieskończenie małej o niezerowym rozmiarze, co zapoczątkowało rachunek różniczkowy i całkowy - w 2015 roku napisałem na ten temat kilka słów. Ich starania nie były precyzyjne i w zasadzie jedynie "mgliście" wykorzystywały przejście w krok nieskończony, pomijając szereg problemów z tym związanych.

Cantor zajął się prawdziwie aktualną nieskończonością, wprowadzając definicję równoliczności zbiorów (również tych nieskończonych), co pozwoliło uogólnić pojęcie liczności zbioru. Dziś moc zbioru, określana mianem liczby kardynalnej i oznaczana |A|, odnosi się do wskazania zbioru równolicznego (na bazie istnienia bijekcji - czyli jednoznacznego parowania elementów dwóch zbiorów - co działa również w przypadku nieskończonym), którego moc jest znana. Idąc dalej - Cantor w liczbach kardynalnych wprowadził porządek. Powiemy, że |A|\leq |B| jeśli A jest równoliczne z podzbiorem B.

Na mocy twierdzenie Cantora-Bernsteina otrzymujemy, że

jeśli |A|\leq |B| oraz |B|\leq |A| to |A|=|B|

Wynik genialny, gdyż pozwala porządkować również zbiory nieskończone! Cantor uczynił ten krok, wskazał nieskończoność najmniejszą - tj. nieskończoność zbioru liczb naturalnych. Zbiory równoliczne ze zbiorem liczb naturalnych nazywamy dziś nieskończonymi zbiorami przeliczalnymi o mocy \aleph_0 (czyt. aleph zero).

W 1890 roku Cantor udowodnił przełomowe twierdzenie mówiące, że każdy zbiór ma mniejszą moc niż zbiór jego podzbiorów (zbiór potęgowy).

|A|< |2^A|

Kolejny genialny wynik, dający "generator" coraz to "większych" nieskończoności. Tych większych nieskończoności nie trzeba było szukać bardzo daleko. Analizując zbiór liczb rzeczywistych Cantor stwierdził, że jego nieskończoność znacznie przewyższa nieskończoność liczb naturalnych. Nieskończoność zbioru liczb rzeczywistych nazywamy dziś continuum i oznaczamy \mathfrak{c}.

\mathfrak{c}=2^{\aleph_0}

Czy istnieje nieskończoność większa od nieskończoności liczb naturalnych oraz mniejsza od nieskończoności liczb rzeczywistych? To pytanie również postawił Cantor, niestety na swoje nieszczęście... Pytanie, nazywane dziś Hipotezą Continuum, doprowadziło Cantora do choroby psychicznej. Cantor do końca życia przekonany był - na zmianę - o prawdziwości / nieprawdziwości hipotezy, co rusz przesyłając dowody potwierdzające / zaprzeczające. Dopiero w 1963 roku Paul Cohen wykazał, że Hipoteza Coninuum jest niezależna od aksjomatów teorii mnogości - czyli, że na bazie tych aksjomatów, nie można jej ani wykazać ani zaprzeczyć...

Zdecydowałem się na ten nieco długi, nie do końca związany z geometrią fraktalną, wstęp, ze względu na wpływ, jaki wywarły na moją osobę idee Georga Cantora. W 2007 roku napisałem artykuł "Od paradoksów do Hipotezy Continuum czyli - Tajemnice Nieskończoności" - zapraszam do lektury wszystkich pragnących zgłębić pojęcie nieskończoności w matematyce.

Polecam również "A Hierarchy of Infinities" - odcinek z serii "PBS Infinite Series".

Zbiór Cantora

Zbiór Cantora jest podzbiorem jednostkowego odcinka powstającym poprzez:

  • podział odcinka na 3 równe części;
  • usunięcie części środkowej;
  • powtórzenie procedury usuwania dla nowo powstałych odcinków.

Finalny zbiór Cantora jest zbiorem granicznym przy nieskończenie wielu iteracjach wykonanych zgodnie z powyższymi punktami.

Zbiór Cantora

Zbiór Cantora został przez opisany w roku 1883.

Niezwykłe właściwości zbioru Cantora

  • Długość zbioru Cantora jest równa 0 - w języku bardziej formalnym powiemy, że jest to zbiór miary 0 (w sensie miary Lebesgue'a).

Zbiór Cantora powstaje poprzez usuwanie pewnych części - policzmy długość odcinków usuniętych.

1\cdot\frac{1}{3}+2\cdot\frac{1}{9}+4\cdot\frac{1}{27}+\ldots+2^{n-1}\cdot\frac{1}{3^n}+\ldots=

=\displaystyle\sum_{n=1}^{\infty}\frac{2^{n-1}}{3^n}=\displaystyle\sum_{n=1}^{\infty}\frac{2^{n-1}}{3\cdot 3^{n-1}}=

=\displaystyle\sum_{n=1}^{\infty}\frac{1}{3}\bigg(\frac{2}{3}\bigg)^{n-1}=\frac{1}{3}\cdot\frac{1}{1-\frac{2}{3}}=1

Długość odcinków usuniętych jest równa jedności, zatem to co pozostało musi mieć długość równą 0 🙂

  • Zbiór Cantora jest równoliczny ze zbiorem liczb rzeczywistych \mathbb{R} - czyli ma moc continuum \mathfrak{c}.

Jest to dość zaskakująca własność dla zbioru, który nie ma długości (co pokazaliśmy wyżej). Zbiór Cantora ma formę "rozdmuchanego pyłu", mimo to punktów jest znacznie więcej niż liczb naturalnych. Szczegóły dowodu relacji równoliczności znajdziecie tutaj.

  • Zbiór Cantora posiada własność samo-podobieństwa - czyli, że w jego skład wchodzą "jego mniejsze kopie".

Zbiór Cantora i samo-podobieństwo

Własność samo-podobieństwa wynika wprost z definicji zbioru. Powyżej na obrazku zaznaczyłem część zbioru podobną do jego całości.

Zbiór Cantora jako fraktal

Zbiór Cantora posiada nietrywialną strukturę w każdej skali i jest samo-podobny - jest to zatem fraktal, najprostszy z możliwych 🙂

Iloczyn kartezjański zbiorów Cantora

Pył Cantora 2D - źródło Wikipedia

Pył Cantora 2D - źródło Wikipedia

Pył Cantora 3D - źródło Wikipedia

Pył Cantora 3D - źródło Wikipedia

Georg Cantor - ciekawostki

  • Był uczniem Karla Weierstrass'a oraz Leopolda Kronecker'a.
  • Przyjaźnił się z Richardem Dedekind'em - pamiętacie przedziały Dedekinda i liczby rzeczywiste? 🙂
  • Był osobą bardzo wierzącą. Odkrywając tajemnice nieskończoności odnosił wrażenie, że to sam Bóg mu je przekazuje.
  • Z powodu niemożności rozwiązania Hipotezy Continuum popadł w ciężką depresję, był wielokrotnie hospitalizowany, nie odzyskał w pełni zdrowia.
  • W ostatnich latach życia zajmował się mistycyzmem rozwijając koncepcję Absolutnej Nieskończoności, którą utożsamiał z Bogiem.

Pozdrowienia,

Mariusz Gromada

Karl Weierstrass i Funkcja Weierstrassa - czyli geometria fraktalna (część 2)

Karl Weierstrass - źródło Wikipedia: https://pl.wikipedia.org/wiki/Karl_Weierstrass

Karl Theodor Wilhelm Weierstrass (1815 - 1897) niemiecki matematyk uznawany za "ojca współczesnej analizy matematycznej". Choć minęło już 17 lat, to nadal doskonale pamiętam pierwszy semestr studiów matematycznych i ekspozycję na podstawowe "bardziej abstrakcyjne" twierdzenia, w tym Twierdzenie Bolzano-Weierstrassa. Twierdzenie mówi, że "każdy rzeczywisty ciąg ograniczony zawiera podciąg zbieżny", i choć brzmi prosto i ogólnie, jest niezwykle przydatnym narzędziem dowodzenia innych wyników metodą nie-wprost (zgodnie ze schematem "załóżmy, że ... wtedy istnieje ciąg ograniczony, że ..., wtedy istnieje podciąg zbieżny, że ..., i z własności ... wynika sprzeczność z założeniem"). Pięknie to (i nie tylko to) wykładał Pan Prof. Dr Hab. Tadeusz Rzeżuchowski - wielkie dzięki Panie Profesorze!

Funkcja Weierstrassa

Większość matematyków z okresu XVIII i XIX wieku uważało, że wszystkie rzeczywiste funkcje ciągłe są różniczkowalne w znaczącej części swej dziedziny (poza zbiorem izolowanych punktów). Dosyć naturalny pogląd okazał się jednak fałszywy, co wykazał Weierstrass w 1872 roku, a wcześniej podejrzewali Bernhard Riemann oraz Bernard Bolzano (prawdopodobnie w roku 1830 Bolzano podał kontrprzykład, którego nie opublikował). Funkcja Weierstrassa jest przykładem rzeczywistej funkcji ciągłej nieróżniczkowalnej w całej dziedzinie (tzn. nie istnieje ani jeden punkt dziedziny, w otoczeniu którego funkcja zachowuje się "normalnie" - np. monotonicznie). Własność nietypowa, a nawet patologiczna! Jednak nie dla fraktali, zatem i nie dla otaczającej nas natury (analogia do nieintuicyjnej mechaniki kwantowej zaskakująco precyzyjnie opisującej rzeczywistość).

{\Large f(x)=\displaystyle\sum_{n=0}^\infty a^n\cos(b^n\pi x)}

gdzie

{\large 0<a<1\qquad ab>1+\frac{3}{2}\pi}

Warto zauważyć, że funkcję Weierstrassa można zapisać w postaci analitycznej (w uproszczeniu - podając wzór).

Funkcja Weierstrassa i fraktale

Poniżej wykres funkcji Weierstrassa na przedziale [-2; 2].

Funkcja Weierstrassa - By Eeyore22 (Own work) [Public domain], via Wikimedia Commons

Benoit Mandelbrot mawiał, że "fraktal to zbiór matematyczny (lub inny obiekt ) charakteryzujący się w każdej skali wysoką nieregularnością oraz dużą fragmentacją." W części pierwszej cyklu o "geometrii fraktalnej"odnosząc się do słów Mandelbrota, pisałem, że cechą fraktalną jest nietrywialna struktura obiektu w każdej skali - tzn. powiększanie ujawnia kolejne równie skomplikowane formy. Wspomniałem również o samo-podobieństwie - tzn. sytuacji, gdy w skład obiektu wchodzą jego "mniejsze" kopie. Wykres funkcji Weierstrassa zdaje się spełniać te kryteria - był to pierwszy odkryty fraktal!

Karl Weierstrass - ciekawostki

Weierstrass wykładał w Wałczu oraz w Braniewie. Wikipedia wymienia, że jego uczniami byli: Georg Cantor, Otto Holder, Georg Frobenius, Felix Klein, Hermann Minkowski.

 

Pozdrowienia,

Mariusz Gromada

Przeciwieństwo nieskończoności, Wielkość nieskończenie mała, Wielkość infinitezymalna, Różniczka, Monada, Infinitesimal, Differential - czyli początki rachunku różniczkowego i całkowego

Wielkość nieskończenie mała - Pole koła

Wielkość nieskończenie - geneza powstania

W 17 wieku Newton i Leibniz skonstruowali podstawy rachunku różniczkowego i całkowego. Ich logika opierała się na wykorzystaniu wielkości nieskończenie małej w celu wyznaczenia powierzchni pod krzywą daną równaniem funkcji. Podejście to zakładało istnienie niezerowego elementu nieskończenie małego. Filozof Leibniz poszedł dalej, gdyż ponadto uważał, że cały świat jest zbudowany z tzw. monad, czyli z substancji, które nie mają żadnej postaci, ponieważ są niepodzielne, nie mogą być ani wytworzone ani unicestwione.

Jeszcze przed naszą erą Grecy z sukcesem stosowali metodę wyczerpywania do wyznaczenia pól powierzchni figur geometrycznych. Metoda ta wykorzystywała granice, nie wykorzystywała natomiast wielkości nieskończenie małej. Jednak z metody wyczerpywania wyrosła zasada Cavalieriego, odkryta przez Archimedesa, służąca do wyznaczania objętości brył, która opierała się na argumentacji wielkości niepodzielnej.

Wielkość nieskończenie mała a skala Plancka

Intuicja podpowiada, że wielkość nieskończenie mała powinna być ekstremalnie mała, ale o niezerowym rozmiarze. W świecie praktycznym byłaby to np. wielkość mniejsza od najmniejszej teoretycznie możliwej wielkości do zmierzenia. Np. skala Plancka w fizyce dostarcza teoretycznej granicy pomiaru - nie ma możliwości skonstruowania przyrządu pomiarowego z błędem mniejszym niż skala Plancka, co nie oznacza, że poniżej skali Plancka nic nie istnieje.

Wielkość nieskończenie mała - cykl filmów od Numberphile

Numberphile logo Zapraszam do ciekawego cyklu filmów przygotowanych przez Numberphile na temat wielkości nieskończenie małych.

I na koniec jeszcze ciekawostka od MinutePhysics - Proof Without Words: The Circle.

Pozdrowienia,

Mariusz Gromada