Georg Cantor i trójkowy zbiór Cantora - czyli geometria fraktalna (część 3)

Georg Cantor - źródło Wikipedia.org

Georg Ferdinand Ludwig Philipp Cantor (1845 - 1918) - niemiecki matematyk, który zainicjował (oraz znacząco rozwinął) teorię mnogości. Można powiedzieć, że "Cantor dla teorii mnogości jest tym, kim Mandelbrot dla geometrii fraktalnej". Cantora osobiście zaliczam do grona gigantów matematyki, których koncepcje i wyniki prac znacząco wyprzedzały daną epokę. Cantor jako pierwszy zadał pytanie o rozmiar nieskończoności. Wprawdzie w 17 wieku Newton i Leibniz stosowali pojęcie wielkości nieskończenie małej o niezerowym rozmiarze, co zapoczątkowało rachunek różniczkowy i całkowy - w 2015 roku napisałem na ten temat kilka słów. Ich starania nie były precyzyjne i w zasadzie jedynie "mgliście" wykorzystywały przejście w krok nieskończony, pomijając szereg problemów z tym związanych.

Cantor zajął się prawdziwie aktualną nieskończonością, wprowadzając definicję równoliczności zbiorów (również tych nieskończonych), co pozwoliło uogólnić pojęcie liczności zbioru. Dziś moc zbioru, określana mianem liczby kardynalnej i oznaczana |A|, odnosi się do wskazania zbioru równolicznego (na bazie istnienia bijekcji - czyli jednoznacznego parowania elementów dwóch zbiorów - co działa również w przypadku nieskończonym), którego moc jest znana. Idąc dalej - Cantor w liczbach kardynalnych wprowadził porządek. Powiemy, że |A|\leq |B| jeśli A jest równoliczne z podzbiorem B.

Na mocy twierdzenie Cantora-Bernsteina otrzymujemy, że

jeśli |A|\leq |B| oraz |B|\leq |A| to |A|=|B|

Wynik genialny, gdyż pozwala porządkować również zbiory nieskończone! Cantor uczynił ten krok, wskazał nieskończoność najmniejszą - tj. nieskończoność zbioru liczb naturalnych. Zbiory równoliczne ze zbiorem liczb naturalnych nazywamy dziś nieskończonymi zbiorami przeliczalnymi o mocy \aleph_0 (czyt. aleph zero).

W 1890 roku Cantor udowodnił przełomowe twierdzenie mówiące, że każdy zbiór ma mniejszą moc niż zbiór jego podzbiorów (zbiór potęgowy).

|A|< |2^A|

Kolejny genialny wynik, dający "generator" coraz to "większych" nieskończoności. Tych większych nieskończoności nie trzeba było szukać bardzo daleko. Analizując zbiór liczb rzeczywistych Cantor stwierdził, że jego nieskończoność znacznie przewyższa nieskończoność liczb naturalnych. Nieskończoność zbioru liczb rzeczywistych nazywamy dziś continuum i oznaczamy \mathfrak{c}.

\mathfrak{c}=2^{\aleph_0}

Czy istnieje nieskończoność większa od nieskończoności liczb naturalnych oraz mniejsza od nieskończoności liczb rzeczywistych? To pytanie również postawił Cantor, niestety na swoje nieszczęście... Pytanie, nazywane dziś Hipotezą Continuum, doprowadziło Cantora do choroby psychicznej. Cantor do końca życia przekonany był - na zmianę - o prawdziwości / nieprawdziwości hipotezy, co rusz przesyłając dowody potwierdzające / zaprzeczające. Dopiero w 1963 roku Paul Cohen wykazał, że Hipoteza Coninuum jest niezależna od aksjomatów teorii mnogości - czyli, że na bazie tych aksjomatów, nie można jej ani wykazać ani zaprzeczyć...

Zdecydowałem się na ten nieco długi, nie do końca związany z geometrią fraktalną, wstęp, ze względu na wpływ, jaki wywarły na moją osobę idee Georga Cantora. W 2007 roku napisałem artykuł "Od paradoksów do Hipotezy Continuum czyli - Tajemnice Nieskończoności" - zapraszam do lektury wszystkich pragnących zgłębić pojęcie nieskończoności w matematyce.

Polecam również "A Hierarchy of Infinities" - odcinek z serii "PBS Infinite Series".

Zbiór Cantora

Zbiór Cantora jest podzbiorem jednostkowego odcinka powstającym poprzez:

  • podział odcinka na 3 równe części;
  • usunięcie części środkowej;
  • powtórzenie procedury usuwania dla nowo powstałych odcinków.

Finalny zbiór Cantora jest zbiorem granicznym przy nieskończenie wielu iteracjach wykonanych zgodnie z powyższymi punktami.

Zbiór Cantora

Zbiór Cantora został przez opisany w roku 1883.

Niezwykłe właściwości zbioru Cantora

  • Długość zbioru Cantora jest równa 0 - w języku bardziej formalnym powiemy, że jest to zbiór miary 0 (w sensie miary Lebesgue'a).

Zbiór Cantora powstaje poprzez usuwanie pewnych części - policzmy długość odcinków usuniętych.

1\cdot\frac{1}{3}+2\cdot\frac{1}{9}+4\cdot\frac{1}{27}+\ldots+2^{n-1}\cdot\frac{1}{3^n}+\ldots=

=\displaystyle\sum_{n=1}^{\infty}\frac{2^{n-1}}{3^n}=\displaystyle\sum_{n=1}^{\infty}\frac{2^{n-1}}{3\cdot 3^{n-1}}=

=\displaystyle\sum_{n=1}^{\infty}\frac{1}{3}\bigg(\frac{2}{3}\bigg)^{n-1}=\frac{1}{3}\cdot\frac{1}{1-\frac{2}{3}}=1

Długość odcinków usuniętych jest równa jedności, zatem to co pozostało musi mieć długość równą 0 🙂

  • Zbiór Cantora jest równoliczny ze zbiorem liczb rzeczywistych \mathbb{R} - czyli ma moc continuum \mathfrak{c}.

Jest to dość zaskakująca własność dla zbioru, który nie ma długości (co pokazaliśmy wyżej). Zbiór Cantora ma formę "rozdmuchanego pyłu", mimo to punktów jest znacznie więcej niż liczb naturalnych. Szczegóły dowodu relacji równoliczności znajdziecie tutaj.

  • Zbiór Cantora posiada własność samo-podobieństwa - czyli, że w jego skład wchodzą "jego mniejsze kopie".

Zbiór Cantora i samo-podobieństwo

Własność samo-podobieństwa wynika wprost z definicji zbioru. Powyżej na obrazku zaznaczyłem część zbioru podobną do jego całości.

Zbiór Cantora jako fraktal

Zbiór Cantora posiada nietrywialną strukturę w każdej skali i jest samo-podobny - jest to zatem fraktal, najprostszy z możliwych 🙂

Iloczyn kartezjański zbiorów Cantora

Pył Cantora 2D - źródło Wikipedia

Pył Cantora 2D - źródło Wikipedia

Pył Cantora 3D - źródło Wikipedia

Pył Cantora 3D - źródło Wikipedia

Georg Cantor - ciekawostki

  • Był uczniem Karla Weierstrass'a oraz Leopolda Kronecker'a.
  • Przyjaźnił się z Richardem Dedekind'em - pamiętacie przedziały Dedekinda i liczby rzeczywiste? 🙂
  • Był osobą bardzo wierzącą. Odkrywając tajemnice nieskończoności odnosił wrażenie, że to sam Bóg mu je przekazuje.
  • Z powodu niemożności rozwiązania Hipotezy Continuum popadł w ciężką depresję, był wielokrotnie hospitalizowany, nie odzyskał w pełni zdrowia.
  • W ostatnich latach życia zajmował się mistycyzmem rozwijając koncepcję Absolutnej Nieskończoności, którą utożsamiał z Bogiem.

Pozdrowienia,

Mariusz Gromada

Zero Silnia - czyli dlaczego 0!=1?

Artykuł "Mnożenie liczb ujemnych - czyli dlaczego minus razy minus daje plus?" cieszy się ogromnym zainteresowaniem (np. w piątek 21.10.2016 został pobity rekord, mianowicie tylko w tym jednym dniu 350 unikalnych użytkowników zapoznało się z treścią wpisu). Będąc świadomym, że dla wielu z Was ważne jest zrozumienie motywacji stojącej za podstawowymi definicjami, postanowiłem rozpocząć nowy cykl "Dlaczego?". Nowa seria skupi się na powszechnie znanych zagadnieniach, których wyjaśnienie nie jest już takie oczywiste. 🙂 Dziś na tapetę idzie zero silnia! Przedstawię kilka argumentacji - w tym coś dla mniej i coś dla bardziej zaawansowanych! Będzie hardcorowo 🙂

Zero silnia równa się jeden / 0!=1

Silnia - definicja

W celu przypomnienia

n!=n\times (n-1)\times (n-2)\times \ldots \times 2\times 1

Przykłady

4!=4\cdot 3\cdot 2\cdot 1=24

3!=3\cdot 2\cdot 1=6

2!=2\cdot 1=2

1!=1

0!=??? - no właśnie 🙂 - do tego wrócę za chwilkę!

Silnia jako liczba permutacji

W uproszczeniu permutacja zbioru (mówimy o zbiorach skończonych) to funkcja wyznaczająca kolejność jego elementów. Np. {1,2,3,4}, {2,4,1,3}, {4,3,2,1} ... są różnymi permutacjami zbioru {1,2,3,4}.

W ogólnym przypadku - jeśli mamy do czynienia ze zbiorem n-elementowym otrzymujemy:

  • n sposobów wyboru elementu 1 (bo mamy do dyspozycji cały zbiór)
  • n-1 sposobów wyboru elementu 2 (bo pierwszy jest już wybrany, pozostało n-1)
  • n-2 sposobów wyboru elementu 3 (bo 2 pierwsze są już wybrane, pozostało n-2)
  • ...
  • n-(k-1) sposobów wyboru elementu k (bo k-1 pierwszych jest już wybranych, pozostało n-(k-1) )
  • ...
  • 2 sposoby wyboru elementu n-1 (bo n-2 elementy wybrano, pozostały wolne 2)
  • 1 sposób wyboru elementu n (bo n-1 elementów wybrano, pozostał wolny tylko 1)

i finalnie liczba różnych uporządkowań zbioru n-elementowego wynosi:

{\small n\times (n-1)\times (n-2)\times \ldots \times 2\times 1=n!}

Zatem interpretacja n! to liczba permutacji (czyli liczba różnych uporządkowań) zbioru n-elementowego.

No dobrze - ale jak to pomaga w ustaleniu 0! (zero silnia)? Przecież ciężko mówić o kolejności elementów zbioru pustego... Do tego wrócę również nieco później 🙂

Wariacja bez powtórzeń

Brrr - paskudna ta nazwa - ale ok - spróbujmy. Mówimy, że wybór dokładnie k-różnych elementów, zwracając uwagę na kolejność, ze zbioru n-elementowego, jest k-elementową wariacją bez powtórzeń zbioru n-elementowego. Przykłady różnych 3-elementowych wariacji bez powtórzeń zbioru {1,2,3,4,5} to: {1,2,3}, {3,2,1},{4,5,2},...

Liczbę V_n^k k-elementowych wariacji bez powtórzeń zbioru n-elementowego wyznaczymy na bazie:

  • n sposobów wyboru elementu 1
  • n-1 sposobów wyboru elementu 2
  • n-2 sposobów wyboru elementu 3
  • ...
  • n-(k-1) sposobów wyboru elementu k

i finalnie

{\large V_n^k}={\small n\times (n-1)\times (n-2)\times\ldots\times \bigg(n-(k-1)\bigg)}

ale

{\small n\times (n-1)\times (n-2)\times \ldots\times \big(n-(k-1)\big)}=...

={\small\frac{n\times (n-1)\times (n-2)\times \ldots\times \big(n-(k-1)\big)\times (n-k)\times \ldots \times 2\times 1}{(n-k)\times \ldots \times 2\times 1}}=...

...=\frac{n!}{(n-k)!}

Zatem

{\large V_n^k=}{\Large\frac{n!}{(n-k)!} }

0! = 1 (słownie: zero silnia równa się jeden)

Zauważmy, że n-elementowa wariacja bez powtórzeń zbioru n-elementowego jest w zasadzie jego permutacją, zatem liczba takich wariacji będzie równa liczbie permutacji, co zapisujemy:

{\large V_n^n=n!}

ale

{\large V_n^n=}{\Large \frac{n!}{(n-n)!}}={\Large \frac{n!}{0!}}

w konsekwencji

n!={\large \frac{n!}{0!}}

{0!\cdot n!=n!}

{\Large 0!=1}

Powyższe uzasadnia, że przyjęcie 0!=1 jest wygodne, gdyż zapewnia "spójność" podstawowych wzorów. Ale czy stoi za tym coś więcej?

!!! Dalsza część dla nieco bardziej zaawansowanych czytelników !!!

Funkcja jako odwzorowanie zbiorów

Funkcja "- schemat

Funkcja f:A\to B, gdzie dla każdego a \in A istnieje f(a)=b\in B wyznacza tak naprawdę relację pomiędzy elementami a i b. Przy takim podejściu możemy powiedzieć, że elementy a\in A oraz b\in B są w relacji f wtedy i tylko wtedy gdy f(a)=b.

Funkcja jako podzbiór iloczynu kartezjańskiego

Funkcję f:A\to B możemy potraktować jako podzbiór iloczynu kartezjańskiego zbiorów A i B, co symbolicznie zapiszemy f\subseteq A\times B

(a,b)\in f \subseteq A\times B \iff f(a)=b

Dobrym przykładem jest wykres funkcji rzeczywistej, który jest podzbiorem płaszczyzny.

Iniekcja - czyli funkcja różnowartościowa

Funkcja "1-1" różnowartościowa - Iniekcja

Iniekcja to inaczej funkcja różnowartościowa, tzn. funkcja f:A\to B jest różnowartościowa wtedy i tylko wtedy, gdy dla dowolnych elementów x,y\in A spełniony jest warunek

x\neq y \implies f(x) \neq f(y)

Surjekcja - czyli funkcja "na"

Funkcja "na" - Surjekcja

Surjekcja to taki przypadek funkcji f:A\to B, że każdy element zbioru B ma swój odpowiednik w zbiorze A. Formalnie zapiszemy to tak

{\large \displaystyle\forall_{b \in B} \quad\displaystyle\exists_{a\in A}\quad}f(a)=b

Bijekcja - czyli funkcja odwracalna (wzajemnie jednoznaczna)

Funkcja odwracalna "1-1" i "na" - Bijekcja

Bijekcja to funkcja f:A\to B, która jednocześnie spełnia warunek iniekcji oraz surjekcji, tzn. jest różnowartościowa oraz "na". Bijekcja jest funkcją odwracalną i wyznacza odwzorowanie wzajemnie jednoznaczne zbioru A na zbiór B (każdy element zbioru A jest jednoznacznie przypisany do elementu zbioru B, oraz każdy element zbioru B ma jednoznaczny odpowiednik w zbiorze A).

Bijekcja vs Permutacja

Permutacja jest funkcją zwracająca uporządkowanie zbioru, tzn. jeśli rozważamy n-elementowy zbiór {1, 2, ..., n} to permutacja będzie funkcją

p:\{1, 2, ..., n\}\to\{1, 2, ..., n\}

spełniającą warunek bijekcji. Pytając o liczbę permutacji możemy równoważnie pytać o liczbę różnych bijekcji z danego zbioru w samego siebie.

Funkcja pusta f:\emptyset\to B

Funkcją pustą nazywamy każdą funkcję, której dziedziną jest zbiór pusty.

f:\emptyset\to B

Wykres funkcji pustej jest zbiorem pustym, gdyż iloczyn kartezjański \emptyset\times B=\emptysetFunkcja pusta jest różnowartościowa, gdyż w dziedzinie (czyli w zbiorze pustym) nie istnieją takie dwa różne elementy, dla których wartość funkcji jest równa.

Funkcja pusta f:\emptyset\to \emptyset

Funkcja pusta f:\emptyset\to \emptyset jest bijekcją, gdyż nie istnieje element przeciwdziedziny (przeciwdziedzina jest zbiorem pustym) nie będący w relacji z elementem dziedziny. Zauważmy, że istnieje dokładnie jedna bijekcja f:\emptyset\to \emptyset, co wynika z faktu, że funkcja jest podzbiorem iloczynu kartezjańskiego dziedziny i przeciwdziedziny. W przypadku rozważanej funkcji pustej f:\emptyset\to \emptyset wspominany iloczyn kartezjański to zbiór pusty \emptyset\times\emptyset=\emptyset, który ma dokładnie jeden podzbiór - również zbiór pusty.

0! = 1 vs funkcja pusta f:\emptyset\to \emptyset

Pisałem wyżej, że liczbę permutacji zbioru n-elementowego można utożsamiać z liczbą bijekcji z tego zbioru w samego siebie. Tym samym permutacjom zbioru 0-elementowego odpowiadają bijekcje ze zbioru pustego w zbiór pusty - a taka funkcja jest dokładnie jedna! 🙂 Trochę abstrakcyjne, ale się zgadza 🙂

Funkcja Gamma (zwana również gammą Eulera) - czyli silnia dla liczb rzeczywistych i zespolonych

Funkcja Gamma - źródło Wikipedia

Funkcja Gamma jest funkcją, która rozszerza pojęcie silni na cały zbiór liczb rzeczywistych, a nawet zespolonych!

\Gamma(z)=\displaystyle\int_0^{+\infty}t^{z-1}e^{-t}dt

 Okazuje się (po scałkowaniu przez części), że

\Gamma(z+1)=z\cdot\Gamma(z)

oraz

\Gamma(1)=\displaystyle\int_0^{+\infty}e^{-t}dt=...

...=\displaystyle\int_{-\infty}^{0}e^{t}dt=...

...=[e^{t}]_{-\infty}^{0}=...

...=e^0-e^{-\infty}=1-0=1

 \Gamma(1)=1

Z powyższego wynika, że dla wszystkich całkowitych liczb n\geq 0 zachodzi

 {\Gamma(n+1)=n!}

 {\large0!=\Gamma(1)=1}

Kolejne bardzo ciekawe spostrzeżenie, że {0!} ma związek z funkcją eksponencjalną!!

Funkcja eksponencjalna

Zwięzek liczby e oraz silni jest nawet większy!

e=\displaystyle\sum_{n=0}^\infty\frac{1}{n!}=\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\ldots

Obiecałem, że będzie hardcorowo - i było 🙂

Pozdrowienia,

Mariusz Gromada

Matematyka w obrazkach #2 - Rzut stereograficzny

Przekształcenie stereograficzne (rzut stereograficzny) okręgu na prostą oraz sfery na płaszczyznę - czyli równoliczność odcinka / okręgu z całą prostą oraz sfery z płaszczyzną.

Rzut stereograficzny okręgu na prostą

Rzut stereograficzny okręgu na prostą

Rzut stereograficzny sfery na płaszczyznę

Rzut stereograficzny sfery na płaszczyznę

Pozdrowienia,

Mariusz Gromada

Przeciwieństwo nieskończoności, Wielkość nieskończenie mała, Wielkość infinitezymalna, Różniczka, Monada, Infinitesimal, Differential - czyli początki rachunku różniczkowego i całkowego

Wielkość nieskończenie mała - Pole koła

Wielkość nieskończenie - geneza powstania

W 17 wieku Newton i Leibniz skonstruowali podstawy rachunku różniczkowego i całkowego. Ich logika opierała się na wykorzystaniu wielkości nieskończenie małej w celu wyznaczenia powierzchni pod krzywą daną równaniem funkcji. Podejście to zakładało istnienie niezerowego elementu nieskończenie małego. Filozof Leibniz poszedł dalej, gdyż ponadto uważał, że cały świat jest zbudowany z tzw. monad, czyli z substancji, które nie mają żadnej postaci, ponieważ są niepodzielne, nie mogą być ani wytworzone ani unicestwione.

Jeszcze przed naszą erą Grecy z sukcesem stosowali metodę wyczerpywania do wyznaczenia pól powierzchni figur geometrycznych. Metoda ta wykorzystywała granice, nie wykorzystywała natomiast wielkości nieskończenie małej. Jednak z metody wyczerpywania wyrosła zasada Cavalieriego, odkryta przez Archimedesa, służąca do wyznaczania objętości brył, która opierała się na argumentacji wielkości niepodzielnej.

Wielkość nieskończenie mała a skala Plancka

Intuicja podpowiada, że wielkość nieskończenie mała powinna być ekstremalnie mała, ale o niezerowym rozmiarze. W świecie praktycznym byłaby to np. wielkość mniejsza od najmniejszej teoretycznie możliwej wielkości do zmierzenia. Np. skala Plancka w fizyce dostarcza teoretycznej granicy pomiaru - nie ma możliwości skonstruowania przyrządu pomiarowego z błędem mniejszym niż skala Plancka, co nie oznacza, że poniżej skali Plancka nic nie istnieje.

Wielkość nieskończenie mała - cykl filmów od Numberphile

Numberphile logo Zapraszam do ciekawego cyklu filmów przygotowanych przez Numberphile na temat wielkości nieskończenie małych.

I na koniec jeszcze ciekawostka od MinutePhysics - Proof Without Words: The Circle.

Pozdrowienia,

Mariusz Gromada

Różne oblicza nieskończoności

Nieskończoność

----------------------

"Skończoność jest pożywieniem matematyki, nieskończoność - tlenem."

----------------------
"W matematyce - chodzimy na skróty przez nieskończoność."

----------------------
"Nieskończoność jest równikiem pomiędzy skończonymi biegunami założenia i tezy."

----------------------
"Do najistotniejszych pojęć matematyki należą mosty łączące skończoność i nieskończoność."

----------------------

Leżącą cyfra osiem, lemniskata ∞, dobrze wszystkim znany symbol nieskończoności. Czasami z plusem, czasami z minusem, innym razem samotnie, ale zawsze od początku do końca, od zera do krańca wszystkiego. Pojęcie nieskończoności pojawia się w wielu dziedzinach. Świat fizyki zastanawia się czy Wszechświat jest nieskończony? Czy istnieje nieskończoność w mikroskali? Czy materię można dzielić na coraz mniejsze części, powtarzając czynność bez końca? Świat werbalny przedstawia nieskończoność jako granicę, jako zjawisko cykliczne, jako abstrakcję. Boskość wraz z wiecznością silnie wiążą się z nieskończonością dla świata duchowego. Nawet w świecie komputerów prosty błąd programisty może doprowadzić do nieskończonej pętli. Wiele możliwości interpretacji, wiele typów nieskończoności, a świat matematyki dostarcza kolejnych. Dlatego zapraszam wszystkich do poznania wielu różnych oblicz nieskończoności w matematyce, do zrozumienia, że istnieją te mniejsze i te większe, że nie istnieje największa, że jednocześnie możemy wskazać nieskończoność najmniejszą – i bardziej ogólnie – że istnieją metody porównywania rozmiarów nieskończoności!

Zapraszam do eseju "Od paradoksów do hipotezy continuum - czyli tajemnice nieskończoności."

Pozdrowienia,

Mariusz Gromada

Paradoks Banacha-Tarskiego i Cudowne rozmnożenie chleba w Galilei

Paradoks Banacha-Tarskiego

W 1924 roku Stefan Banach i Alfred Tarski sformułowali i udowodnili paradoksalne twierdzenie teorii mnogości o takim podziale jednej kuli na kilka części (skończoną ich liczbę), aby z powstałych elementów można było "skleić" dwie kule o identycznych parametrach jak ta wyjściowa. Podczas operacji "sklejania" wykorzystali jedynie obroty i przesunięcia, bez rozciągania, czy też innych operacji zmieniających kształt! Czyżby matematyka znalazła naukowe uzasadnienie dla Cudownego rozmnożenia chleba w Galilei? Jeśli chcesz poznać odpowiedź polecam film przygotowany przez Vsauce Vsauce

Jak zwykle zachęcam do dyskusji i komentarzy 🙂

Pozdrowienia,

Mariusz Gromada