Dlaczego pole powierzchni koła wynosi π·r²?

P=\pi r^2 to chyba najbardziej znany wzór, będący zarazem rzadko rozumianym 🙂 Choć wzór na pole powierzchni koła, bo o nim tu mowa, znany był już w Starożytnej Grecji, to jego uzasadnienie wcale nie jest łatwe. Jest to zatem świetny temat do wzbogacenia cyklu "Dlaczego?" 🙂 Do dzieła! 🙂

Pole powierzchni koła - wzór

Pole powierzchni koła - wzór

P=\pi r^2

Jak widać powyżej - kwadrat i koło, o tej samej powierzchni, nie są "jakoś intuicyjnie łatwo" powiązane. Więcej - wykazano nawet, że kwadratura koła (procedura wykonywana przy użyciu cyrkla i linijki bez podziałki) jest niewykonalna! I tu pojawia się genialny pomysł z prostokątem 🙂 Nim powiem o co chodzi przyjrzyjmy się co tak naprawdę mówi wzór \pi r^2.

Pole powierzchni kola - Pi r kwadrat

\pi\times r^2 - czyli w kole mieszczą się nieco ponad 3 kwadraty o boku r 🙂

Pole powierzchni koła - dowód przez animację 🙂

Koło - pole powierzchni - animacja

Trochę się napracowałem przy tej animacji 🙂

Pole powierzchni koła - wielokąty foremne

Uwaga - poniższe nie jest dowodem, a obrazuje jedynie sposób wnioskowania stosowany przez Starożytnych Greków (tak np. Archimedes wyznaczał liczbę pi).

Pole powierzchni koła - wielokąt foremny

Można zauważyć, że obwód n-kąta foremnego opisanego na kole wynosi

O_n=na

a jego pole to suma pól trójkątów o podstawie a i wysokości równej promieniowi koła r.

P_n=n\frac{ar}{2}=\frac{nar}{2}

Podstawiając

P_n=\frac{O_nr}{2}

Gdy n jest coraz większe, P_n coraz dokładniej przybliża pole koła, a O_n jego obwód. W "kroku granicznym" (zagadnienie wielkości nieskończenie małej) otrzymujemy

O_n\to 2\pi r - tu z definicji liczby \pi

P_n\to\frac{2\pi rr}{2}=\pi r^2

Pole powierzchni koła - dowód nieco bardziej formalny

Dowód, który przeprowadzę, nie będzie oparty na całkowaniu równania okręgu. Wykorzystam ciągi i ich granice oraz twierdzenie o trzech ciągach.

Twierdzenie o trzech ciągach

Niech będą dane trzy ciągi rzeczywiste a_n, b_n i c_n. Jeśli "prawie wszędzie" (tzn. pomijając co najwyżej skończenie wiele wyrazów) zachodzi zależność

a_n\leq b_n\leq c_n

oraz

\lim a_n = \lim c_n = g

to

\lim b_n = g

Twierdzenie o trzech ciągach - strona na Wikipedii.

Przyda się również \lim_{x\to 0}\frac{\sin x}{x} = 1

Pamiętam jak w szkole średniej, na lekcjach fizyki, mój nauczyciel wielokrotnie przyjmował, że dla małych x funkcję \sin x dobrze przybliża właśnie x. Wynika to z rozwinięcia \sin x w szereg Taylora - wyjaśnienie pomijam. Wyznaczę jednak samą granicę - bo się przyda 🙂

\lim_{x\to 0}\frac{\sin x}{x}=\big(\frac{0}{0}\big)\text{ reg. de l`Hospitala}=

=\lim_{x\to 0}\frac{(\sin x)\prime}{x\prime}=\lim_{x\to 0}\frac{\cos x}{1}=

=\frac{\cos 0}{1}=\frac{1}{1}=1

\lim_{x\to 0}\frac{\sin x}{x} = 1

Reguła de l’Hospitala - Wikipedia

Pole powierzchni koła - dowód

Rozważmy n-kąty foremne opisane na kole i wpisane w koło. Pole n-kąta opisanego nazwijmy "polem zewnętrznym" i oznaczmy Z_n. Analogicznie pole n-kąta wpisanego nazwiemy "polem wewnętrznym" oznaczając je W_n.

Pole powierzchni koła - wielokąt foremny wpisany i opisany

Oczywiście

W_n\leq P\leq Z_n

gdzie P oznacza pole koła.

W kolejnym kroku dzielimy n-kąty na n-trójkątów. Zauważmy, że w ten sposób kąt pełny został również podzielony na n równych części. Pole "trójkąta zewnętrznego" oznaczymy przez T_n, a trójkąta wewnętrznego t_n.

Pole powierzchni koła - awielokąt foremny wpisany i opisany

Z_n=nT_n

W_n=nt_n

Wyznaczamy pole trójkąta "zewnętrznego"

T_n=Ar

ale

\frac{A}{r}=\text{tg}\beta=\frac{\sin\beta}{\cos\beta}

\frac{A}{r}r^2=r^2\frac{\sin\beta}{\cos\beta}

Ar=r^2\frac{\sin\beta}{\cos\beta}

T_n=r^2\frac{\sin\beta}{\cos\beta}=r^2\frac{\sin\frac{\pi}{n}}{\cos\frac{\pi}{n}}

Wyznaczamy pole trójkąta "wewnętrznego"

t_n=ah

ale

\frac{a}{r}=\sin\beta

a=r\sin\beta

oraz

\frac{h}{r}=\cos\beta

h=r\cos\beta

podstawiając

t_n=r\sin\beta\cdot r\cos\beta=r^2\sin\beta\cos\beta

stosując tożsamości trygonometryczne

t_n=r^2\sin\beta\cos\beta=\frac{r^2}{2}2\sin\beta\cos\beta=

=\frac{r^2}{2}\sin2\beta=\frac{r^2}{2}\sin\alpha

t_n=\frac{r^2}{2}\sin\alpha=\frac{r^2}{2}\sin\frac{2\pi}{n}

Finalne ciągi

Z_n=nT_n=nr^2\frac{\sin\frac{\pi}{n}}{\cos\frac{\pi}{n}}

W_n=nt_n=\frac{nr^2}{2}\sin\frac{2\pi}{n}

Granice ciągów

\lim Z_n=\lim nr^2\frac{\sin\frac{\pi}{n}}{\cos\frac{\pi}{n}}=

=\lim \frac{nr^2}{\cos\frac{\pi}{n}}\cdot\frac{\pi}{n}\cdot\frac{\sin\frac{\pi}{n}}{\frac{\pi}{n}}=

=\lim \frac{\pi r^2}{\cos\frac{\pi}{n}}\cdot\frac{\sin\frac{\pi}{n}}{\frac{\pi}{n}}=\frac{\pi r^2}{\cos 0}\cdot 1=

=\frac{\pi r^2}{1}=\pi r^2

\lim Z_n=\pi r^2

\lim W_n=\lim\frac{nr^2}{2}\sin\frac{2\pi}{n}=

\lim \frac{nr^2}{2}\cdot \frac{2\pi}{n}\cdot\frac{\sin\frac{2\pi}{n}}{\frac{2\pi}{n}}=

\lim \pi r^2\cdot\frac{\sin\frac{2\pi}{n}}{\frac{2\pi}{n}}=\pi r^2\cdot 1=\pi r^2

\lim W_n=\pi r^2

Wniosek

Z twierdzenia o trzech ciągach wnioskujemy, że pole koła to

P=\lim W_n=\lim Z_n=\pi r^2

Tempo zbieżności ciągów W_n oraz Z_n

Pole powierzchni koła - tempo zbieżności ciągów

🙂

Pozdrowienia,

Mariusz Gromada

 

Views All Time
Views All Time
1531
Views Today
Views Today
1

2 myśli nt. „Dlaczego pole powierzchni koła wynosi π·r²?

    • Dzięki - całka jak najbardziej - dla nas matematyków daje super łatwe rozwiązanie i super łatwą interpretację. Do pozostałych bardziej trafia prosta geometryczna intuicja.

      Pozdrowienia

Dodaj komentarz

Twój adres email nie zostanie opublikowany. Pola, których wypełnienie jest wymagane, są oznaczone symbolem *