Model teoretycznie idealny / Tips & Tricks na krzywych - czyli ocena jakości klasyfikacji (część 10)

Kilka kolejnych części cyklu "Ocena jakości klasyfikacji" skupi się na poradach i pewnych trickach (czyli seria "Tips & Tricks na krzywych"), które zastosowane do krzywych: Lift, Captured Response, ROC, znacząco pogłębiają ich interpretację.

!!! Uwaga: dla uproszczenia - wszędzie tam, gdzie piszę kwantyl, mam na myśli jego rząd !!!

Model teoretycznie idealny a prawdopodobieństwo a-priori

Model teoretycznie idealny to taki model, który daje najlepsze możliwe uporządkowanie - inaczej mówiąc najlepszą możliwą separację klas. Taki model nie myli się przy założeniu, że punkt odcięcia odpowiada prawdopodobieństwu a-priori. Wtedy faktycznie cała klasa pozytywna jest po jednej stronie, a cała klasa negatywna po drugiej stronie punktu cut-off.

Model Teoretycznie Idealny - Porządek - Cut-Off - Brak błędu

Przy każdym innym cut-off model teoretycznie idealny popełnia mniejszy lub większy błąd.

Model Teoretycznie Idealny - Porządek - Cut-Off - Błąd

Ile istnieje różnych modeli teoretycznie idealnych?

Liczba różnych modeli teoretycznie idealnych to funkcja liczności klasy faktycznie pozytywnej i liczności klasy faktycznie negatywnej. Liczba ta będzie iloczynem możliwych permutacji w klasie pozytywnej i możliwych permutacji w klasie negatywnej. Takie modele, z punktu widzenia klasycznej oceny jakości klasyfikacji, są nierozróżnialne (dlatego na wykresach oznaczamy tylko jeden). Sytuacja może się zmienić, jeśli, w celu lepszego uporządkowania, rozważymy dodatkowe cechy (oprócz samej przynależności do badanej klasy), takie jak: wartość klienta, oczekiwany life-time, etc...

Model teoretycznie idealny i maksymalny Lift nieskumulowany

Lift nieskumulowany to stosunek prawdopodobieństwa w przedziale bazy \Delta q_n i prawdopodobieństwa a-priori (w całej bazie).

Lift.Nieskum=\frac{p(1|\Delta n)}{p(1)}

Jeśli baza jest uszeregowana malejąco względem oceny modelem, maksymalny możliwy lift nieskumulowany będzie funkcją dwuwartościową.

Lift.Nieskum(q)=\begin{cases}\frac{1}{apriori}&\text{dla}\quad q\leq apriori\\0&\text{dla}\quad q>apriori\end{cases}

q - kwantyl bazy (malejąco względem oceny modelem)

Model Teoretycznie Idealny - Lift Nieskumulowany

Model teoretycznie idealny i maksymalny Lift skumulowany

Również w przypadku skumulowanym, będąc "na lewo od a-priori", maksymalny możliwy lift skumulowany wynosi \frac{1}{apriori} (cały czas mamy do dyspozycji "1-dynki"). Jeśli "cut-off przekroczy kwantyl a-priori", klasyfikacja pozytywna zaczyna być "zaśmiecana" frakcją False-Positive, gdyż nie ma już "1-dynek" - co wynika z najlepszego możliwego porządku (model teoretycznie idealny) - tzn. wszystkie obiekty z klasy faktycznie pozytywnej znajdują się w kwantylach z przedziału [0,apriori].

Lift.Skum(q)=\begin{cases}\frac{1}{apriori}&\text{dla}\quad q\leq apriori\\\frac{1}{q}&\text{dla}\quad q>apriori\end{cases}

q - kwantyl bazy (malejąco względem oceny modelem)

Dlaczego \frac{1}{q}? Przyjmijmy q>apriori, wtedy

  • q to rozmiar "bazy"
  • apriori to rozmiar klasy faktycznie pozytywnej w rozważanej "bazie"

p\big(1\big|~[0,q]~\big)=\frac{apriori}{q}

Lift.Skum(q)=\frac{p\big(1\big|~[0,q]~\big)}{p(1)}=\frac{apriori}{q\times apriori}=\frac{1}{q}

Model Teoretycznie Idealny - Lift Skumulowany

Model teoretycznie idealny i maksymalny Captured Response

Dysponując najlepszym możliwym uporządkowaniem krzywa Captured Response liniowo rośnie dla argumentów "na lewo" od apriori - każdy dodany obiekt, to klasa faktycznie pozytywna. W punkcie "apriori" całość targetu jest już pokryta - zatem wartość krzywej to 100%.

Capt.Resp(q)=\begin{cases}\frac{q}{apriori}&\text{dla}\quad q\leq apriori\\1&\text{dla}\quad q>apriori\end{cases}

q - kwantyl bazy (malejąco względem oceny modelem)

Model Teoretycznie Idealny - Captured Response

Model teoretycznie idealny i ROC

  • Jeśli cut-off jest "na lewo" od a-priori: pokrywamy wyłącznie elementy klasy faktycznie pozytywnej, zatem rośnie wyłącznie TPR, przy zerowym FPR.
  • Dla cut-off odpowiadającego a-priori: pokryto 100% klasy faktycznie pozytywnej (TPR = 100%), jednocześnie nie popełniając żadnego błędu (FPR = 0%).
  • Dla cut-off większego od a-priori: TPR już wcześniej osiągnęło 100%, teraz klasyfikując pozytywnie popełniamy coraz większy błąd - tzn. FPR zaczyna rosnąć.
  • Dla cut-off = 1: pokryliśmy całość klasy faktycznie pozytywnej (TPR=100%), jednak w tym samym kroku wszelkie obiekty faktycznie negatywne zaliczyliśmy do klasy pozytywnej (FPR=100%).

Model Teoretycznie Idealny - ROC

"Przestrzeń na model" - czyli sens budowy modelu

  • Dla dużych a-priori (np. 50-60%) przestrzeń na model (tzn. możliwy do osiągnięcia lift) jest bardzo mała. W takich sytuacjach należy najpierw zadać sobie pytanie co chcemy osiągnąć, czym jest target, czy nie istnieją proste reguły biznesowe odpowiadające naszym potrzebom? Duże a-priori nie jest przypadkiem abstrakcyjnym - szereg pytań dotyczy cech / zdarzeń bardzo częstych w bazach / populacjach, np: czy rodzina ma dziecko?, czy ktoś posiada samochód?, etc..
  • Małe a-priori (np. kilka promili) daje bardzo dużą przestrzeń na model (typowo duży osiągany lift), ale należy pamiętać, że 5 razy 0 daje 0!! Przykładowa kalkulacja:
    • a-priori = 0.5%
    • lift (na którymś niskim centylu) = 10
    • wtedy prawdopodobieństwo targetu na bazie klasyfikowanej pozytywnie = 0.5% * 10 = 5%
    • wtedy w 95% przypadkach mylimy się - owszem możemy pokryć sporą część targetu, ale sami sobie odpowiedzcie czy nieprawidłowy komunikat do 95% grupy ma sens?
  • Pośrednie a-priori (kilka - kilkanaście procent) - sytuacja optymalna 🙂

Pozdrowienia,

Mariusz Gromada

Views All Time
Views All Time
356
Views Today
Views Today
1

Dodaj komentarz

Twój adres email nie zostanie opublikowany. Pola, których wypełnienie jest wymagane, są oznaczone symbolem *