TPR i FNR na bazie Liftu Skumulowanego – czyli ocena jakości klasyfikacji (część 18)

Część #18 cyklu „Ocena jakości klasyfikacji” to pogłębienie interpretacji krzywej Liftu Skumulowanego – mam wrażenie, że to już ostatni wpis z serii „Tips & Tricks na krzywych”.

TPR (Captured Response) i FNR na bazie Liftu Skumulowanego

Dla modelu idealnego krzywa liftu skumulowanego przyjmuje następującą postać:

$$Lift.Skum(q)=\begin{cases}\frac{1}{apriori}&\text{dla}\quad q\leq apriori\\\frac{1}{q}&\text{dla}\quad q>apriori\end{cases}$$

$$q$$ – kwantyl (rząd) bazy (malejąco względem oceny modelem)

Stosując technikę „przedłużania modelu idealnego”, analogicznie do zastosowanej w części #17 „PPV i FDR na bazie TPR”, tworzymy „skalę” umożliwiającą wyznaczenie TPR (True-Positive Rate) oraz FNR (False-Negative Rate).

TPR i FNR na bazie Liftu Skumulowanego

Zależności

$$TPR(q)=q\times Lift.Skum(q)=\frac{A}{B}$$

$$A=Lift.Skum(q)$$

$$B=\frac{1}{q}$$

Dowód: w części #11 „Captured Response vs Lift” pokazałem, że

$$\frac{CR(q)}{q}=Lift.Skum(q)$$

ale $$CR(q)$$ to to samo co $$TPR(q)$$ – różni się tylko nazwą 🙂

Nieco inny dowód podałem również w części #17 „PPV i FDR na bazie TPR”

$$PPV(q)=\frac{apriori\times TPR(q)}{q}$$

trochę przekształcając otrzymujemy

$$\frac{PPV(q)}{apriori}\times q=TPR(q)$$

Dalej wystarczy zauważyć, że

$$\frac{PPV(q)}{apriori}=Lift.Skum(q)$$

cbdo. 🙂

I ponownie – wydaje mi się, że analogicznie można naszkicować TNR oraz FPR – tylko tu analizując: klasyfikację do klasy negatywnej, krzywą Liftu Skumulowanego dla klasy „0” oraz „przedłużenie” modelu idealnego dla klasy „0” – wymaga sprawdzenia 🙂

Pozdrowienia,

Mariusz Gromada

Views All Time
Views All Time
1086
Views Today
Views Today
4

Dodaj komentarz

Twój adres email nie zostanie opublikowany. Pola, których wypełnienie jest wymagane, są oznaczone symbolem *