Standaryzacja gęstości oraz dystrybuanty (+ odwrotnej) rozkładu prawdopodobieństwa

Standaryzacja zmiennej losowej / Standaryzacja funkcji gęstości

Standaryzacja zmiennej losowej $$X$$ to proces jej „normalizacji”, którego wynikiem jest taka zmienna losowa $$Z$$, że

$$\text{E}Z=0$$

$$\text{Var}(Z)=1$$

Standaryzację łatwo wyobrazić sobie jako działanie, które obywa się w dwóch krokach:

  1. adekwatne „przesunięcie” zmiennej – tu chodzi o uzyskanie zerowej miary położenia, którą jest wartość oczekiwana (wartość średnia) zmiennej
  2. odpowiednia „zmiana skali wartości” zmiennej – w tym przypadku „poprawiamy” miarę rozproszenia, którą jest wariancja.

Standaryzacja Z: jeśli X jest taką zmienną losową, że

Czytaj dalej