Egzotyczna hiperkula - czyli o pomiarach w przestrzeni wielowymiarowej

"Jak oczami wyobraźni zobaczyć 4 wymiary? - zapytano matematyka.
To proste - odpowiedział - wystarczy wyobrazić sobie n-wymiarów i podstawić n=4"
🙂

Hipersześcian i Hiperkula - rzut

Dzisiejszy wpis poświęcę pomiarom odległości, powierzchni i pojemności w przestrzeniach wielowymiarowych. N-wymiarowa przestrzeń euklidesowa dostarcza dosyć oczywistą metrykę - a przez to wydawałoby się - bardzo intuicyjną. To wrażanie jest jednak mylne, co łatwo pokazać analizując wpływ zwiększania liczby wymiarów na dokonywane pomiary. Jak w zależności od liczby wymiarów zmienia się powierzchnia i objętość kuli? Analogicznie - jak zmienia się maksymalna odległość pomiędzy wierzchołkami kostki? Obiecuję - odpowiedzi będą zaskakujące 🙂

Możesz mieć wrażenie, że to wyłącznie abstrakcyjne rozważania. Czy na pewno? Ja w zasadzie na co dzień analizuję Klientów opisanych szeregiem miar. Poszukiwanie podobieństw, skupień, segmentów czy "najbliższych sąsiadów" niemal w całości opiera się na wielowymiarowej metryce euklidesowej. Zapraszam do pogłębienia wiedzy w tym obszarze:-) Zapewniam - warto!

Czytaj dalej

Różne oblicza nieskończoności

Nieskończoność

----------------------

"Skończoność jest pożywieniem matematyki, nieskończoność - tlenem."

----------------------
"W matematyce - chodzimy na skróty przez nieskończoność."

----------------------
"Nieskończoność jest równikiem pomiędzy skończonymi biegunami założenia i tezy."

----------------------
"Do najistotniejszych pojęć matematyki należą mosty łączące skończoność i nieskończoność."

----------------------

Leżącą cyfra osiem, lemniskata ∞, dobrze wszystkim znany symbol nieskończoności. Czasami z plusem, czasami z minusem, innym razem samotnie, ale zawsze od początku do końca, od zera do krańca wszystkiego. Pojęcie nieskończoności pojawia się w wielu dziedzinach. Świat fizyki zastanawia się czy Wszechświat jest nieskończony? Czy istnieje nieskończoność w mikroskali? Czy materię można dzielić na coraz mniejsze części, powtarzając czynność bez końca? Świat werbalny przedstawia nieskończoność jako granicę, jako zjawisko cykliczne, jako abstrakcję. Boskość wraz z wiecznością silnie wiążą się z nieskończonością dla świata duchowego. Nawet w świecie komputerów prosty błąd programisty może doprowadzić do nieskończonej pętli. Wiele możliwości interpretacji, wiele typów nieskończoności, a świat matematyki dostarcza kolejnych. Dlatego zapraszam wszystkich do poznania wielu różnych oblicz nieskończoności w matematyce, do zrozumienia, że istnieją te mniejsze i te większe, że nie istnieje największa, że jednocześnie możemy wskazać nieskończoność najmniejszą – i bardziej ogólnie – że istnieją metody porównywania rozmiarów nieskończoności!

Zapraszam do eseju "Od paradoksów do hipotezy continuum - czyli tajemnice nieskończoności."

Pozdrowienia,

Mariusz Gromada

Wymiar fraktalny

Wymiar fraktalny (nazywany czasami wymiarem samopodobieństwa) ma wiele definicji. Większość z nich opiera się na własności samopodobieństwa. Wymiar fraktalny niesie w sobie bardzo ciekawą informację - pokazuje w jakim stopniu obiekt wypełnia przestrzeń, w której jest osadzony. Dla regularnych obiektów (np. kula, kostka) osadzonych w przestrzeniach n-wymiarowych, wymiar fraktalny wyniesie n (np. wymiar fraktalny kuli 2-wymiarowej wynosi 2), wskazując, że te obiekty w "100% wypełniają" przestrzeń, w której są osadzone. W przypadku fraktali ich wymiar fraktalny jest mniejszy od wymiaru przestrzeni, w której się znajdują - i co bardziej istotne - będzie niecałkowity (a nawet niewymierny). To fascynujące, że takie obiekty istnieją, a geometria fraktalna jest językiem biologii! Wszystkich chętnych do zapoznania się z intuicyjną definicję wymiaru fraktalnego (dla szczególnych klas obiektów i przestrzeni - takich jak przestrzenie metryczne), zapraszam do mojego mini artykułu Fraktale - jako obrazy matematycznego świata zbiorów (fraktale i samopodobieństwo).

Pozdrowienia,

Mariusz Gromada