Karl Theodor Wilhelm Weierstrass (1815 – 1897) niemiecki matematyk uznawany za „ojca współczesnej analizy matematycznej”. Choć minęło już 17 lat, to nadal doskonale pamiętam pierwszy semestr studiów matematycznych i ekspozycję na podstawowe „bardziej abstrakcyjne” twierdzenia, w tym Twierdzenie Bolzano-Weierstrassa. Twierdzenie mówi, że „każdy rzeczywisty ciąg ograniczony zawiera podciąg zbieżny”, i choć brzmi prosto i ogólnie, jest niezwykle przydatnym narzędziem dowodzenia innych wyników metodą nie-wprost (zgodnie ze schematem „załóżmy, że … wtedy istnieje ciąg ograniczony, że …, wtedy istnieje podciąg zbieżny, że …, i z własności … wynika sprzeczność z założeniem”). Pięknie to (i nie tylko to) wykładał Pan Prof. Dr Hab. Tadeusz Rzeżuchowski – wielkie dzięki Panie Profesorze!
Funkcja Weierstrassa
Większość matematyków z okresu XVIII i XIX wieku uważało, że wszystkie rzeczywiste funkcje ciągłe są różniczkowalne w znaczącej części swej dziedziny (poza zbiorem izolowanych punktów). Dosyć naturalny pogląd okazał się jednak fałszywy, co wykazał Weierstrass w 1872 roku, a wcześniej podejrzewali Bernhard Riemann oraz Bernard Bolzano (prawdopodobnie w roku 1830 Bolzano podał kontrprzykład, którego nie opublikował). Funkcja Weierstrassa jest przykładem rzeczywistej funkcji ciągłej nieróżniczkowalnej w całej dziedzinie (tzn. nie istnieje ani jeden punkt dziedziny, w otoczeniu którego funkcja zachowuje się „normalnie” – np. monotonicznie). Własność nietypowa, a nawet patologiczna! Jednak nie dla fraktali, zatem i nie dla otaczającej nas natury (analogia do nieintuicyjnej mechaniki kwantowej zaskakująco precyzyjnie opisującej rzeczywistość).
$${\Large f(x)=\displaystyle\sum_{n=0}^\infty a^n\cos(b^n\pi x)}$$
gdzie
$${\large 0<a<1\qquad ab>1+\frac{3}{2}\pi}$$
Warto zauważyć, że funkcję Weierstrassa można zapisać w postaci analitycznej (w uproszczeniu – podając wzór).
Funkcja Weierstrassa i fraktale
Poniżej wykres funkcji Weierstrassa na przedziale [-2; 2] – źródło Wikipedia.
Benoit Mandelbrot mawiał, że „fraktal to zbiór matematyczny (lub inny obiekt ) charakteryzujący się w każdej skali wysoką nieregularnością oraz dużą fragmentacją.” W części pierwszej cyklu o „geometrii fraktalnej”, odnosząc się do słów Mandelbrota, pisałem, że cechą fraktalną jest nietrywialna struktura obiektu w każdej skali – tzn. powiększanie ujawnia kolejne równie skomplikowane formy. Wspomniałem również o samo-podobieństwie – tzn. sytuacji, gdy w skład obiektu wchodzą jego „mniejsze” kopie. Wykres funkcji Weierstrassa zdaje się spełniać te kryteria – był to pierwszy odkryty fraktal!
Karl Weierstrass – ciekawostki
Weierstrass wykładał w Wałczu oraz w Braniewie. Wikipedia wymienia, że jego uczniami byli: Georg Cantor, Otto Holder, Georg Frobenius, Felix Klein, Hermann Minkowski.
Pozdrowienia,
Mariusz Gromada
Poza Liczbami: Inne Twórcze Przestrzenie
Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury
Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury, które wykorzystują matematyczne wzory i proporcje do tworzenia estetycznych i emocjonalnych doznań. Z nieśmiałą ekscytacją przedstawiam moją pierwszą poważniejszą kompozycję, w której starałem się uchwycić te połączenia.