Wartość oczekiwana dla klasy pozytywnej

W trakcie minionej nocy, około godziny 02:00, miałem nagły przebłysk 🙂 Jakoś tak, nie wiem dlaczego, przypomniałem sobie pewną zależność dla wartości oczekiwanej zmiennej losowej o wartościach nieujemnych. Zdałem sobie sprawę, że na tej podstawie, jestem w stanie opracować twierdzenie dotyczące wskaźnika Giniego (dla modelu predykcyjnego), dające elegancką postać oraz łatwe narzędzie jego estymacji. Wzór, który wyprowadziłem, bazuje na wartości oczekiwanej, dającej się z powodzeniem przybliżyć średnią (np. w SQL). Zaczynamy część #19 cyklu „Ocena jakości klasyfikacji”, jest to „hardcorowy” wpis z serii „Tips & Tricks na krzywych” 🙂 Zapraszam!

Zmienna losowa reprezentująca rząd kwantyla (pozycję) elementu w populacji

  • Niech będzie dana zmienna losowa $Q\in[0;1]$, której wartość reprezentuje rząd kwantyla odpowiadający danemu elementowi, gdzie porządek jest dany malejącą oceną modelem. Inaczej – $Q$ to frakcja bazy.
  • Niech $y\in\{0,1\}$ oznacza klasę faktyczną.
  • Rozważmy zmienne losowe: $Q|y=1$ oraz $Q|y=0$.
  • W częściach #13 oraz #14 wykazałem, że zmienne $Q|y=1$ oraz $Q|y=0$ są opisane funkcjami gęstości podanymi przez: lifty nieskumulowane odpowiednio dla klasy „1” oraz klasy „0”.
  • Również w częściach #13 oraz #14 wykazałem, że zmienne $Q|y=1$ oraz $Q|y=0$ są opisane dystrybuantami podanymi przez: odpowiednio TPR dla klasy „1” oraz TNR dla klasy „0” (tam te funkcje nazywałem Captured Response).
  • W części #15 wykazałem, że wskaźniki Giniego, zdefiniowane osobno dla klasy „1” oraz klasy „0”, są sobie równe – grafika poniżej.

Równość wskaźników Giniego

  • Również w części #15 pokazałem, że

$$Gini=\frac{2G_1}{1-apriori}=\frac{2G_0}{apriori}$$

  • Z powyższego, po drobnych przekształceniach

$$G_1=\frac{(1-apriori)\times Gini}{2}$$

$$G_0=\frac{apriori\times Gini}{2}$$

Wartość oczekiwana zmienne losowej o wartościach nieujemnych

Poniższą zależność pamiętam z analizy przeżycia, gdzie średnią długość przeżycia liczono jako całkę pod funkcją przeżycia 🙂 Każda funkcja przeżycia ma postać $S(t)=1-F(t)$, gdzie $F$ to pewna dystrybuanta.

Twierdzenie: Jeśli zmienna losowa $X$, o ciągłym rozkładzie, przyjmuje wartości nieujemne to:

$$EX=\displaystyle\int_0^\infty P(X\geq x)dx$$

Zakładając, że $F$ jest dystrybuantą zmiennej $X$, bazując na ciągłości rozkładu, możemy zapisać

$$EX=\displaystyle\int_0^\infty \Big(1-F(x)\Big)dx$$

W takim przypadku wartość oczekiwana to pole powierzchni „nad” dystrybuantą ograniczone prostą o wartości 1.

Wskaźniki Giniego na bazie $E(Q|y=1)$

Załóżmy, że $Q|y=1$ ma rozkład ciągły, wtedy

$$E(Q|y=1)=\displaystyle\int_0^1\Big(1-TPR(q)\Big)dq$$

Wartość oczekiwana dla klasy pozytywnej

Ale

$$\displaystyle\int_0^1\Big(1-TPR(q)\Big)dq=\frac{1}{2}-G_1$$

Więc

$$E(Q|y=1)=\frac{1}{2}-G_1$$

Podstawiając

$$E(Q|y=1)=\frac{1}{2}-G_1=$$

$$=\frac{1}{2}-\frac{(1-apriori)\times Gini}{2}$$

$$E(Q|y=1)=\frac{1-(1-apriori)\times Gini}{2}$$

Przekształcając

$$2\times E(Q|y=1)=1-(1-apriori)\times Gini$$

$$(1-apriori)\times Gini=1-2\times E(Q|y=1)$$

Twierdzenie:

$$Gini=\frac{1-2\times E(Q|y=1)}{1-apriori}$$

Wow – wystarczy średni rząd kwantyla na targecie pozytywnym i apriori 🙂

Wskaźniki Giniego na bazie $E(Q|y=0)$

Załóżmy, że $Q|y=0$ ma rozkład ciągły, wtedy

$$E(Q|y=0)=\displaystyle\int_0^1\Big(1-TNR(q)\Big)dq$$

Wartość oczekiwana dla klasy negatywnej

Ale

$$\displaystyle\int_0^1\Big(1-TNR(q)\Big)dq=\frac{1}{2}+G_0$$

Więc

$$E(Q|y=0)=\frac{1}{2}+G_0$$

Podstawiając

$$E(Q|y=0)=\frac{1}{2}+G_0=$$

$$=\frac{1}{2}+\frac{apriori\times Gini}{2}$$

$$E(Q|y=0)=\frac{1+apriori\times Gini}{2}$$

Przekształcając

$$2\times E(Q|y=0)=1+apriori\times Gini$$

$$apriori\times Gini=2\times E(Q|y=0)-1$$

Twierdzenie:

$$Gini=\frac{2\times E(Q|y=0)-1}{apriori}$$

Wow – tym razem wystarczy średni rząd kwantyla na targecie negatywnym i apriori 🙂

Wniosek:

$$\frac{1-2\times E(Q|y=1)}{1-apriori}=\frac{2\times E(Q|y=0)-1}{apriori}$$

Przypadki graniczne

Gini dla modelu losowego powinien wynosić 0, a dla modelu teoretycznie idealnego oczekujemy wartości 1 – sprawdźmy.

Wartość oczekiwana dla przypadków skrajnych

Model losowy

  • $E(Q|y=1)=0.5$
  • $E(Q|y=0)=0.5$

$$Gini=\frac{1-2\times E(Q|y=1)}{1-apriori}=$$

$$=\frac{1-2\times 0.5}{1-apriori}=$$

$=\frac{0}{apriori}=0$ – jest ok 🙂

$$Gini=\frac{2\times E(Q|y=0)-1}{apriori}=$$

$$=\frac{2\times 0.5-1}{apriori}=$$

$=\frac{0}{apriori}=0$ – jest ok 🙂

Model teoretycznie idealny

  • $E(Q|y=1)=\frac{apriori}{2}$
  • $E(Q|y=0)=\frac{aprior+1}{2}$

$$Gini=\frac{1-2\times E(Q|y=1)}{1-apriori}=$$

$$=\frac{1-2\times\frac{apriori}{2}}{1-apriori}=$$

$=\frac{1-apriori}{1-apriori}=1$ – jest ok 🙂

$$Gini=\frac{2\times E(Q|y=0)-1}{apriori}=$$

$$=\frac{2\times\frac{aprior+1}{2}-1}{apriori}=$$

$=\frac{apriori+1-1}{apriori}=1$ – jest ok 🙂

Uwaga praktyczna

Jeśli model predykcyjny zwraca dużo nieunikalnych wartości, licząc rząd kwantyla, warto zastąpić go rzędem na bazie pozycji elementu – inaczej wyniki na bazie średniej mogą być nieprzewidywalne (szczególnie dla małych apriori). Wzory testowane na realnych danych 🙂

Pozdrowienia 🙂

Mariusz Gromada

Poza Liczbami: Inne Twórcze Przestrzenie

Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury

Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury, które wykorzystują matematyczne wzory i proporcje do tworzenia estetycznych i emocjonalnych doznań. Z nieśmiałą ekscytacją przedstawiam moją pierwszą poważniejszą kompozycję, w której starałem się uchwycić te połączenia.

I Am Here – RELEARN – Mariusz Gromada (2024)
I Am Here – RELEARN – Mariusz Gromada (2024)
Deep Under – RELEARN – Mariusz Gromada (2024)
Deep Under – RELEARN – Mariusz Gromada (2024)

Scalar – zaawansowana aplikacja mobilna z silnikiem matematycznym mojego autorstwa

TPR i FNR na bazie Liftu Skumulowanego

Część #18 cyklu „Ocena jakości klasyfikacji” to pogłębienie interpretacji krzywej Liftu Skumulowanego – mam wrażenie, że to już ostatni wpis z serii „Tips & Tricks na krzywych”.

TPR (Captured Response) i FNR na bazie Liftu Skumulowanego

Dla modelu idealnego krzywa liftu skumulowanego przyjmuje następującą postać:

$$Lift.Skum(q)=\begin{cases}\frac{1}{apriori}&\text{dla}\quad q\leq apriori\\\frac{1}{q}&\text{dla}\quad q>apriori\end{cases}$$

$q$ – kwantyl (rząd) bazy (malejąco względem oceny modelem)

Stosując technikę „przedłużania modelu idealnego”, analogicznie do zastosowanej w części #17 „PPV i FDR na bazie TPR”, tworzymy „skalę” umożliwiającą wyznaczenie TPR (True-Positive Rate) oraz FNR (False-Negative Rate).

TPR i FNR na bazie Liftu Skumulowanego

Zależności

$$TPR(q)=q\times Lift.Skum(q)=\frac{A}{B}$$

$$A=Lift.Skum(q)$$

$$B=\frac{1}{q}$$

Dowód: w części #11 „Captured Response vs Lift” pokazałem, że

$$\frac{CR(q)}{q}=Lift.Skum(q)$$

ale $CR(q)$ to to samo co $TPR(q)$ – różni się tylko nazwą 🙂

Nieco inny dowód podałem również w części #17 „PPV i FDR na bazie TPR”

$$PPV(q)=\frac{apriori\times TPR(q)}{q}$$

trochę przekształcając otrzymujemy

$$\frac{PPV(q)}{apriori}\times q=TPR(q)$$

Dalej wystarczy zauważyć, że

$$\frac{PPV(q)}{apriori}=Lift.Skum(q)$$

cbdo. 🙂

I ponownie – wydaje mi się, że analogicznie można naszkicować TNR oraz FPR – tylko tu analizując: klasyfikację do klasy negatywnej, krzywą Liftu Skumulowanego dla klasy „0” oraz „przedłużenie” modelu idealnego dla klasy „0” – wymaga sprawdzenia 🙂

Pozdrowienia,

Mariusz Gromada

Poza Liczbami: Inne Twórcze Przestrzenie

Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury

Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury, które wykorzystują matematyczne wzory i proporcje do tworzenia estetycznych i emocjonalnych doznań. Z nieśmiałą ekscytacją przedstawiam moją pierwszą poważniejszą kompozycję, w której starałem się uchwycić te połączenia.

I Am Here – RELEARN – Mariusz Gromada (2024)
I Am Here – RELEARN – Mariusz Gromada (2024)
Deep Under – RELEARN – Mariusz Gromada (2024)
Deep Under – RELEARN – Mariusz Gromada (2024)

Scalar – zaawansowana aplikacja mobilna z silnikiem matematycznym mojego autorstwa

PPV i FDR na bazie TPR - Captured Response

W części #17 cyklu „Ocena jakości klasyfikacji” wydobędę kolejne informacje z krzywej Captured Response, która, na pierwszy rzut oka, prezentuje wyłącznie TPR (True-Positive-Rate). Kontynuuję zatem serię „Tips & Tricks na krzywych”.

Prawdopodobieństwo skumulowane (PPV, PRECISION) na bazie TPR czyli Captured Response

Dla modelu idealnego krzywa Captured Response ma postać

$$Capt.Resp(q)=\begin{cases}\frac{q}{apriori}&\text{dla}\quad q\leq apriori\\1&\text{dla}\quad q>apriori\end{cases}$$

$q$ – kwantyl (rząd) bazy (malejąco względem oceny modelem)

Rozważając „przedłużenie pierwszej części” definicji na cały odcinek $[0;1]$ otrzymujemy „skalę”, na bazie której łatwo wyznaczyć PPV (Positive Predicted Value) oraz FDR (False Discovery Rate).

$$PPV=\frac{TP}{TP+FP}$$

$$FDR=\frac{FP}{TP+FP}=1-PPV$$

TPR, TNR, PPV, NPV

Zależności

$$PPV(q)=\frac{apriori\times TPR(q)}{q}$$

$$FDR(q)=1-PPV(q)=1-\frac{apriori\times TPR(q)}{q}$$

$q$ – cut-off jako kwantyl (rząd) bazy (malejąco względem oceny modelem)

PPV i FDR na bazie TPR - Captured Response

Dowód: zaczynamy od oznaczeń

  • $N=N_1+N_0$ – liczba obiektów w populacji: total, z klasy pozytywnej „1”, z klasy negatywnej „0”;
  • $q$ – cut-off (jako kwantyl – a dokładnie jego rząd – względem malejącej oceny modelem);
  • $[0,q]$ – klasyfikacja pozytywna;
  • $(q,1]$ – klasyfikacja negatywna;
  • $n_1$ – true positive;
  • $n_0$ – false positive;
  • $n=n_1+n_0$
  • $q=\frac{n}{N}$
  • $apriori=\frac{N_1}{N}$

$$PPV(q)=\frac{n_1}{n}$$

$$A=TPR(q)=\frac{n_1}{N_1}$$

$$C=\frac{q}{apriori}=\frac{n}{N}\times\frac{N}{N_1}=\frac{n}{N_1}$$

$$\frac{A}{C}=\frac{n_1}{N_1}\times\frac{N_1}{n}=\frac{n_1}{n}$$

$$\frac{A}{C}=PPV(q)$$

$$\frac{A}{C}=TPR(q)\times\frac{apriori}{q}=\frac{apriori\times TPR(q)}{q}$$

$$PPV(q)=\frac{apriori\times TPR(q)}{q}$$

cbdo. 🙂

Wydaje mi się, że analogicznie można wyznaczyć NPV – tylko tu analizując: klasyfikację do klasy negatywnej, krzywą Captured Response dla klasy „0” (TNR) oraz „przedłużenie” modelu idealnego dla klasy „0” – sprawdzimy 🙂

Pozdrowienia,

Mariusz Gromada

Poza Liczbami: Inne Twórcze Przestrzenie

Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury

Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury, które wykorzystują matematyczne wzory i proporcje do tworzenia estetycznych i emocjonalnych doznań. Z nieśmiałą ekscytacją przedstawiam moją pierwszą poważniejszą kompozycję, w której starałem się uchwycić te połączenia.

I Am Here – RELEARN – Mariusz Gromada (2024)
I Am Here – RELEARN – Mariusz Gromada (2024)
Deep Under – RELEARN – Mariusz Gromada (2024)
Deep Under – RELEARN – Mariusz Gromada (2024)

Scalar – zaawansowana aplikacja mobilna z silnikiem matematycznym mojego autorstwa

TPR vs Precision

Do napisania 16 części cyklu „Ocena jakości klasyfikacji” zainspirował mnie Kolega i dawny współpracownik! Michał – dzięki za „hint” 🙂 Dziś wskażę pewien sympatyczny punkt przecięcia, którego znajomość jest przydatna, a już z pewnością można „zaszpanować” 🙂 Wpis stanowi zdecydowane wzbogacenie serii „Tips & Tricks na krzywych”.

Krzywe Captured Response (TPR) i prawdopodobieństwo skumulowane (PPV, Precision) przecinają się w punkcie a-priori 🙂

TPR vs Precision

Dowód: zaczynamy od oznaczeń:

  • $N=N_1+N_0$ – liczba obiektów w populacji: total, z klasy pozytywnej „1”, z klasy negatywnej „0”;
  • $q$ – cut-off (jako kwantyl – a dokładnie jego rząd – względem malejącej oceny modelem);
  • $[0,q]$ – klasyfikacja pozytywna;
  • $(q,1]$ – klasyfikacja negatywna;
  • $n_1(q)$ – true positive;
  • $n_0(q)$ – false positive;
  • $n(q)=n_1(q)+n_0(q)=q\cdot N$

Wtedy

$$TPR(q)=CR_1(q)=\frac{n_1(q)}{N_1}=\frac{n_1(q)}{apriori\times N}$$

$$PPV(q)=P\big(~1~|~[0,q]~\big)=\frac{n_1(q)}{n(q)}=\frac{n_1(q)}{qN}$$

Porównując

$$PPV(q)=TPR(q)$$

$$\frac{n_1(q)}{qN}=\frac{n_1(q)}{apriori\times N}$$

Zakładając, że $n_1(q)\neq 0$

$$q=apriori$$

cbdo 🙂

Do czego „sympatyczny” punkt przecięcia może się przydać?

Znajomość punktu przecięcia może się przydać do weryfikacji poprawności analizowanych wykresów i ich spójności z założeniami. Przykładowo – jeśli analityk na jednym wykresie naniesie Captured Response wraz z modelem idealnym, następnie do wykresu doda p-ństwo skumulowane (czyli PPV), i jeśli te krzywe przetną się w innym punkcie niż „aprirori”, to gdzieś mamy błąd! Być może prezentowane wykresy przedstawiają różne modele?

Pozdrowienia,

Mariusz Gromada

Poza Liczbami: Inne Twórcze Przestrzenie

Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury

Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury, które wykorzystują matematyczne wzory i proporcje do tworzenia estetycznych i emocjonalnych doznań. Z nieśmiałą ekscytacją przedstawiam moją pierwszą poważniejszą kompozycję, w której starałem się uchwycić te połączenia.

I Am Here – RELEARN – Mariusz Gromada (2024)
I Am Here – RELEARN – Mariusz Gromada (2024)
Deep Under – RELEARN – Mariusz Gromada (2024)
Deep Under – RELEARN – Mariusz Gromada (2024)

Scalar – zaawansowana aplikacja mobilna z silnikiem matematycznym mojego autorstwa

Atraktor Lorenza

Dziś, przeglądając Twittera, natknąłem się na profil @Mathistopheles – Thomas Oléron Evans. Zdjęcie profilowe jest genialne – wykonane na bazie Atraktora Lorenza – musiałem dodać do cyklu „Matematyka w obrazkach” 🙂 Równie ciekawe jest zdjęcie w tle 🙂

Atraktor Lorenza

Pozdrowienia,

Mariusz Gromada

Poza Liczbami: Inne Twórcze Przestrzenie

Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury

Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury, które wykorzystują matematyczne wzory i proporcje do tworzenia estetycznych i emocjonalnych doznań. Z nieśmiałą ekscytacją przedstawiam moją pierwszą poważniejszą kompozycję, w której starałem się uchwycić te połączenia.

I Am Here – RELEARN – Mariusz Gromada (2024)
I Am Here – RELEARN – Mariusz Gromada (2024)
Deep Under – RELEARN – Mariusz Gromada (2024)
Deep Under – RELEARN – Mariusz Gromada (2024)

Scalar – zaawansowana aplikacja mobilna z silnikiem matematycznym mojego autorstwa

Personalizowany kubek MathSpace.PL

Kubek na bazie motywu „Matematyka w obrazkach #11 – Dobre argumenty to podstawa”. Kubek wygląda świetnie 🙂

Personalizowany kubek MathSpace.PL

Personalizacja kubka

  • Imię / nick / … w chmurce;
  • Dedykowany wzór / formuła w chmurce;

Jak otrzymać kubek?

Warunki, które musisz spełnić:

  • Polubienie profilu MathSpace.PL na Facebooku lub Twitterze lub subskrypcja newslettera;
  • Przesłanie wiadomości (Facebook, Twitter, mail) o chęci zamówienia kubka + opis personalizacji;
  • Zapoznanie się z procesem zamówienia kubka.

Jak wygląda proces zamówienia kubka?

  • Jestem autorem projektu + dokonuję wskazanej personalizacji;
  • Kubki zamawiam w Waszym imieniu poprzez fotokubek.net: kubek biały reklamowy 330 ml z nadrukiem;
  • Nie zarabiam na kubkach!!! Zamawiając poniesiesz opłatę zgodnie z cennikiem fotokubek.net + koszt wysyłki;
  • Otrzymujesz kubek, nie udostępniam projektu (graficznego) kubka;
  • Dodatkowe informacje w indywidualnej korespondencji.

Pozdrowienia,

Mariusz Gromada

Poza Liczbami: Inne Twórcze Przestrzenie

Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury

Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury, które wykorzystują matematyczne wzory i proporcje do tworzenia estetycznych i emocjonalnych doznań. Z nieśmiałą ekscytacją przedstawiam moją pierwszą poważniejszą kompozycję, w której starałem się uchwycić te połączenia.

I Am Here – RELEARN – Mariusz Gromada (2024)
I Am Here – RELEARN – Mariusz Gromada (2024)
Deep Under – RELEARN – Mariusz Gromada (2024)
Deep Under – RELEARN – Mariusz Gromada (2024)

Scalar – zaawansowana aplikacja mobilna z silnikiem matematycznym mojego autorstwa

Walentynki

„Matematyka w obrazkach” o walentynkach 🙂

Pozdrowienia,

Mariusz Gromada

Poza Liczbami: Inne Twórcze Przestrzenie

Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury

Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury, które wykorzystują matematyczne wzory i proporcje do tworzenia estetycznych i emocjonalnych doznań. Z nieśmiałą ekscytacją przedstawiam moją pierwszą poważniejszą kompozycję, w której starałem się uchwycić te połączenia.

I Am Here – RELEARN – Mariusz Gromada (2024)
I Am Here – RELEARN – Mariusz Gromada (2024)
Deep Under – RELEARN – Mariusz Gromada (2024)
Deep Under – RELEARN – Mariusz Gromada (2024)

Scalar – zaawansowana aplikacja mobilna z silnikiem matematycznym mojego autorstwa

Wskaźnik Giniego dla klasy pozytywnej + Wskaźnik Giniego dla klasy negatywnej 0

Dziś zadałem sobie pytanie: jak mają się do siebie wskaźniki Giniego, gdyby je osobno zdefiniować dla klasy pozytywnej „tzn. klasy 1” oraz klasy negatywnej „tzn. klasy 0”? Odpowiedź uzyskałem, czego efektem jest 15 część cyklu „Ocena jakości klasyfikacji”. Tytuł wpisu nawiązuje do faktu, że separację dwóch klas uzyskujemy jednym (i tym) samym modelem 🙂 co poniekąd sugeruje, że … 🙂

… wskaźniki Giniego dla klasy pozytywnej i klasy negatywnej są sobie równe!

Wskaźnik Giniego dla klasy pozytywnej + Wskaźnik Giniego dla klasy negatywnej 0

$$Gini_1=\frac{G_1}{G_1+P_1}$$

$$Gini_0=\frac{G_0}{G_0+P_0}$$

$$Gini_1=Gini_0$$

Dowód:

Wykorzystując wzór na pole trójkąta zapisujemy:

$$Gini_1=\frac{G_1}{\quad\frac{1-apriori}{2}\quad}=\frac{2G_1}{1-apriori}$$

$$Gini_0=\frac{G_0}{\quad\frac{apriori}{2}\quad}=\frac{2G_0}{apriori}$$

Zauważamy, że pole $G_0$ można wyznaczyć na bazie różnicy pomiędzy polem trójkąta i polem powierzchni pod krzywą $CR_0$:

$$G_0=\frac{1}{2}-\displaystyle\int_0^1 CR_0(q)dq$$

Korzystając z zależności pomiędzy $CR_1$ oraz $CR_0$ wyprowadzonej w części 14 „Captured Response dla klasy negatywnej” przekształcamy

$$G_0=\frac{1}{2}-\displaystyle\int_0^1\bigg(\frac{q-apriori\times CR_1(q)}{1-apriori}\bigg)dq=$$

$$=\frac{1}{2}-\frac{1}{1-apriori}\displaystyle\int_0^1\bigg(q-apriori\times CR_1(q)\bigg)dq=$$

$$=\frac{1}{2}-\frac{1}{1-apriori}\Bigg(\displaystyle\int_0^1 qdq-apriori\displaystyle\int_0^1 CR_1(q)dq\Bigg)=$$

$$=\frac{1}{2}-\frac{1}{1-apriori}\Bigg[\frac{q^2}{2}\bigg|_0^1-apriori\bigg(G_1+\frac{1}{2}\bigg)\Bigg]=$$

$$=\frac{1}{2}-\frac{1}{1-apriori}\bigg(\frac{1}{2}-apriori\times G_1-\frac{apriori}{2}\bigg)$$

$$=\frac{1}{2}-\frac{1}{2(1-apriori)}+\frac{apriori\times G_1}{1-apriori}+\frac{apriori}{2(1-apriori)}=$$

$$=\frac{1-apriori}{2(1-apriori)}-\frac{1}{2(1-apriori)}+$$

$$+\frac{apriori\times 2G_1}{2(1-apriori)}+\frac{apriori}{2(1-apriori)}=$$

$$=\frac{1-apriori-1+apriori\times 2G_1+apriori}{2(1-apriori)}=$$

$$=\frac{apriori\times 2G_1}{2(1-apriori)}=$$

$$=\frac{apriori}{2}\times\frac{2G_1}{1-apriori}=$$

$$=\frac{apriori}{2}\times Gini_1$$

$$G_0=\frac{apriori}{2}\times Gini_1$$

Ale

$$Gini_0=\frac{2G_0}{apriori}=$$

$$=\frac{2}{apriori}\times G_0=\frac{2}{apriori}\times\frac{apriori}{2}\times Gini_1$$

$$Gini_0=Gini_1$$

cbdo 🙂

Pozdrowienia,

Mariusz Gromada

Poza Liczbami: Inne Twórcze Przestrzenie

Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury

Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury, które wykorzystują matematyczne wzory i proporcje do tworzenia estetycznych i emocjonalnych doznań. Z nieśmiałą ekscytacją przedstawiam moją pierwszą poważniejszą kompozycję, w której starałem się uchwycić te połączenia.

I Am Here – RELEARN – Mariusz Gromada (2024)
I Am Here – RELEARN – Mariusz Gromada (2024)
Deep Under – RELEARN – Mariusz Gromada (2024)
Deep Under – RELEARN – Mariusz Gromada (2024)

Scalar – zaawansowana aplikacja mobilna z silnikiem matematycznym mojego autorstwa

Captured Response - klasa klasa pozytywna i klasa negatywna - Statystyka KS Kołmogorowa-Smirnowa

Witaj w 14 części cyklu „Ocena jakości klasyfikacji”. Dziś rozwinę wątek oszacowania separacji klas na bazie krzywej Captured Response – będzie to kolejny odcinek z serii „Tips & Tricks na krzywych”.

Statystyka KS Kołmogorowa-Smirnowa jako miara różnicy rozkładów

Rozważmy dwie rzeczywiste zmienne losowe $X_1$ i $X_2$ oraz ich dystrybuanty odpowiednio $F_{X_1}$ oraz $F_{X_2}$. Statystyką Kołmogorowa-Smirnowa dla zmiennych $X_1$ oraz $X_2$ nazywamy odległość $D\big(X_1,X_2\big)$ zdefiniowaną następująco:

$$D\big(X_1,X_2\big)=\displaystyle\sup_{x\in\mathbb{R}}\bigg|F_{X_1}(x)-F_{X_2}(x)\bigg|$$

Statystyka KS Kołmogorowa-Smirnowa

Jeśli $x$ jest badaną wartością, to odległość KS interpretujemy jako maksymalną różnicę pomiędzy rzędem kwantyla w rozkładzie pierwszym i rzędem kwantyla w rozkładzie drugimi, które to rzędy odpowiadają wspólnej wartości $x$.

Do tanga trzeba dwojga

Przy modelach predykcyjnych, dla problemu klasyfikacji binarnej, tak naprawdę dysponujemy trzema rozkładami:

  • rozkład populacji / próby względem oceny modelem;
  • rozkład klasy pozytywnej względem oceny tym samym modelem;
  • rozkład klasy negatywnej również względem oceny tym samym modelem.

W części #13 „Lift i Captured Response to gęstość i dystrybuanta tego samego rozkładu” pokazałem jak „wygląda” rozkład klasy pozytywnej. Dziś interesuje nas odległość KS rozkładu „jedynek” od rozkładu „zer”, przechodzimy więc do zdefiniowana gęstości i dystrybuanty dla klasy negatywnej.

Lift nieskumulowany dla klasy negatywnej – tzn. „klasy 0”

Załóżmy, że dana jest funkcja $Lift.Niesk_1(\Delta q)$ liftu nieskumulowanego dla klasy pozytywnej, gdzie $\Delta q$ to przedział rzędu kwantyla (w całej populacji) względem malejącej oceny modelem.

$$Lift.Niesk_0(\Delta q)=\frac{P(0|\Delta q)}{P(0)}$$

$$Lift.Niesk_0(\Delta q)=\frac{1-P(1|\Delta q)}{1-P(1)}=$$

$$=\frac{1-P(1)\frac{P(1|\Delta q)}{P(1)}}{1-P(1)}=$$

$$=\frac{1-P(1)\cdot Lift.Niesk_1(\Delta q)}{1-P(1)}$$

$$Lift.Niesk_0(\Delta q)=\frac{1-apriori\times Lift.Niesk_1(\Delta q)}{1-apriori}$$

Przykład dla pewnej funkcji liftu nieskumulowanego i apriori = 30%.

Lift nieskumulowany - klasa "1" + klasa "0"

Warto zwrócić uwagę na punkt przecięcia tych krzywych – spotykają się w tym samym miejscu, gdzie dochodzi do zrównania z krzywą dla modelu losowego. Dosyć łatwo to uzasadnić: jeśli $P(1|\Delta q^i)=apriori$ to $P(0|\Delta q^i)=1-apriori$.

Sprawdźmy jeszcze czy $Lift.Niesk_0(\Delta q)$ spełnia warunek „unormowania”.

$$\displaystyle\int_0^1 Lift.Niesk_0(q)dq=$$

$$=\displaystyle\int_0^1 \frac{1-apriori\times Lift.Niesk_1(q)}{1-apriori}dq=$$

$$=\frac{1}{1-apriori}\displaystyle\int_0^1 \bigg(1-apriori\times Lift.Niesk_1(q)\bigg)dq=$$

$$=\frac{1}{1-apriori}\bigg(\displaystyle\int_0^1 1dq-apriori\displaystyle\int_0^1Lift.Niesk_1(q)dq\bigg)=$$

$$=\frac{1}{1-apriori}(1-apriori)=1$$

$$\displaystyle\int_0^1 Lift.Niesk_0(q)dq=1$$

Captured Response dla klasy negatywnej – tzn. „klasy 0”

Załóżmy, że dana jest funkcja $CR_1(q)$ Captured Response dla klasy pozytywnej, gdzie $q$ to rząd kwantyla (w całej populacji) względem malejącej oceny modelem.

Oznaczenia:

  • $q$ – punkt, dla którego wyznaczamy wartość krzywej;
  • $N=N_1+N_0$ – liczba obserwacji: łączna, z „klasy 1”, z „klasy 0”;
  • $n=n_1+n_2=q\cdot N$ – liczba obserwacji „na lewo” od $q$: łączna, z „klasy 1”, z „klasy 0”;

Wtedy:

$$CR_1(q)=\frac{n_1}{N_1}$$

$$CR_0(q)=\frac{n_0}{N_0}$$

Wyprowadzamy $CR_0(q)$ w zależności od $CR_1(q)$.

$$CR_0(q)=\frac{n_0}{N_0}=\frac{n-n_1}{N_0}=\frac{n-N_1\frac{n_1}{N_1}}{N_0}=$$

$$=\frac{n-N_1 CR_1(q)}{N_0}=\frac{qN-N_1 CR_1(q)}{N_0}=$$

$$=\frac{qN}{N_0}+\frac{N_1 CR_1(q)}{N_0}=q\bigg(\frac{N_0}{N}\bigg)^{-1}-\frac{N_1}{N_0}CR_1(q)=$$

$$=\frac{q}{1-apriori}-\frac{N_1 N}{NN_0}CR_1(q)=0$$

$$=\frac{q}{1-apriori}-\frac{N_1}{N}\bigg(\frac{N_0}{N}\bigg)^{-1}CR_1(q)=$$

$$=\frac{q}{1-apriori}-apriori\frac{1}{1-apriori}CR_1(q)$$

$$CR_0(q)=\frac{q-apriori\times CR_1(q)}{1-apriori}$$

Przykład dla pewnej funkcji Captured Response i apriori = 30%.

Captured Response - klasa klasa pozytywna i klasa negatywna

$CR_0(q)$ jest dystrybuantą, gdyż:

  • $CR_0(0)=\frac{0-apriori\times CR_1(0)}{1-apriori}=\frac{0-apriori\times 0}{1-apriori}=0$
  • $CR_0(1)=\frac{1-apriori\times CR_1(1)}{1-apriori}=\frac{1-apriori\times 1}{1-apriori}=1$
  • Jest funkcją niemalejącą, co wynika bezpośrednio z jej definicji.

Lift nieskumulowany dla klasy negatywnej to pochodna Captured Response dla klasy negatywnej

$$CR_0^\prime(q)=\bigg(\frac{q-apriori\times CR_1(q)}{1-apriori}\bigg)^\prime=$$

$$=\frac{\big(q-apriori\times CR_1(q)\big)^\prime}{1-apriori}=\frac{1-apriori\times CR_1^\prime(q)}{1-apriori}=$$

$$=\frac{1-apriori\times Lift.Niesk_1(q)}{1-apriori}=Lift.Niesk_0(q)$$

$$CR_0^\prime(q)=Lift.Niesk_0(q)$$

Aby w pełni zrozumieć powyższe przejścia zapoznaj się z częścią #11 „Captured Response vs Lift”, gdzie uzasadniam, że pochodna Captured Response to lift nieskumulowany.

Wniosek: Lift nieskumulowany dla klasy negatywnej oraz Captured Response dla klasy negatywnej to gęstość i dystrybuanta tego samego rozkładu.

Jeśli

$$Q=(q_1,q_2)$$

to

$$P(q\in Q|0)=\displaystyle\int_{q_1}^{q_2}Lift.Niesk_0(q)dq=$$

$$=CR_0(q_2)-CR_0(q_1)$$

$$P(q\in Q|1)=\displaystyle\int_{q_1}^{q_2}Lift.Niesk_1(q)dq=$$

$$=CR_1(q_2)-CR_1(q_1)$$

Wskaźnik KS dla $CR_1$ i $CR_0$ – czyli miara separacji klas

Wskaźnik KS dla $CR_1$ i $CR_0$ zdefiniujemy następująco:

$$D\big(CR_1,CR_0\big)=\displaystyle\sup_{q\in[0,1]}\bigg|CR_1(q)-CR_0(q)\bigg|$$

Równoważnie poszukujemy takiego $q_{max}\in[0,1]$, że

$$D\big(CR_1,CR_0\big)=\displaystyle\sup_{q\in[0,1]}\bigg|CR_1(q)-CR_0(q)\bigg|=$$

$$=CR_1(q_{max})-CR_0(q_{max})$$

Zauważmy, że

$$CR_1(q)-CR_0(q)=\bigg(CR_1(q)-q\bigg)+\bigg(q-CR_0(q)\bigg)$$

Badamy przebieg zmienności – a konkretnie typujemy punkt maksimum na podstawie pochodnej.

Dla klasy „1”:

$$\bigg(CR_1(q)-q\bigg)^\prime=0$$

$$CR_1^\prime(q)=1$$

$$Lift.Niesk_1(q)=1$$

Dla klasy „0”:

$$\bigg(q-CR_0(q)\bigg)^\prime=0$$

$$CR_0^\prime(q)=1$$

$$Lift.Niesk_0(q)=1$$

$$\frac{1-apriori\times Lift.Niesk_1(q)}{1-apriori}=1$$

$$1-apriori\times Lift.Niesk_1(q)=1-apriori$$

$$-apriori\times Lift.Niesk_1(q)=-apriori$$

$$apriori\times Lift.Niesk_1(q)=apriori$$

$$Lift.Niesk_1(q)=1$$

Wniosek: odległość $CR_1(q)-CR_0(q)$ jest maksymalizowana w punkcie, w którym funkcja liftu nieskumulowanego ma wartość 1 – tzn. w punkcie przecięcia z liftem dla modelu losowego.

Captured Response - klasa klasa pozytywna i klasa negatywna - Statystyka KS Kołmogorowa-Smirnowa

Powyższy wniosek jest dosyć intuicyjny – jeśli lift nieskumulowany „wchodzi w obszar bycia mniejszym niż 1” oznacza to, że jego efekt jest mniejszy od działania modelu losowego. Dodawanie kolejnych obserwacji zaczyna zmniejszać separację rozkładów.

Pozdrowienia,

Mariusz Gromada

Poza Liczbami: Inne Twórcze Przestrzenie

Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury

Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury, które wykorzystują matematyczne wzory i proporcje do tworzenia estetycznych i emocjonalnych doznań. Z nieśmiałą ekscytacją przedstawiam moją pierwszą poważniejszą kompozycję, w której starałem się uchwycić te połączenia.

I Am Here – RELEARN – Mariusz Gromada (2024)
I Am Here – RELEARN – Mariusz Gromada (2024)
Deep Under – RELEARN – Mariusz Gromada (2024)
Deep Under – RELEARN – Mariusz Gromada (2024)

Scalar – zaawansowana aplikacja mobilna z silnikiem matematycznym mojego autorstwa

Matematyczne przesłanie

Przesłanie od Matematyki – szczególnie aktualne! Nie jestem autorem poniższej grafiki – dlatego podziękowania dla unearthedcomics.com – świetny dodatek do serii „Matematyka w obrazkach”.

Matematyczne przesłanie

Pozdrowienia,

Mariusz Gromada

Poza Liczbami: Inne Twórcze Przestrzenie

Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury

Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury, które wykorzystują matematyczne wzory i proporcje do tworzenia estetycznych i emocjonalnych doznań. Z nieśmiałą ekscytacją przedstawiam moją pierwszą poważniejszą kompozycję, w której starałem się uchwycić te połączenia.

I Am Here – RELEARN – Mariusz Gromada (2024)
I Am Here – RELEARN – Mariusz Gromada (2024)
Deep Under – RELEARN – Mariusz Gromada (2024)
Deep Under – RELEARN – Mariusz Gromada (2024)

Scalar – zaawansowana aplikacja mobilna z silnikiem matematycznym mojego autorstwa