Matematyka w obrazkach #18 – Pizza Infinito
Pizza Infinito w cyklu „Matematyka w obrazkach” – smacznego 🙂 Pozdrowienia, Mariusz Gromada
Pizza Infinito w cyklu „Matematyka w obrazkach” – smacznego 🙂 Pozdrowienia, Mariusz Gromada
Tetracja (wieża wykładnicza, super-potęgowanie, iterowane potęgowanie, 4 hiper-operator) Tetracja to działanie dwuargumentowe definiowane jako wielokrotne potęgowanie elementu przez siebie. Definicja: dla dowolnej liczby rzeczywistej $a>0$ i nieujemnej liczby całkowitej $n\geq 0$ tetrację $n$ liczby $a$ definiujemy jako: $${^{n}a}=\begin{cases}1&\text{dla}\quad n=0\\a&\text{dla}\quad n=1\\ \underbrace{a^{a^{\cdots^{a}}}}_{n}&\text{dla}\quad n>1\end{cases}$$ Przykłady $${^{3}2}=2^{2^2}=2^{(2^2)}=2^4=16$$ $${^{4}2}=2^{2^{2^2}}=2^{(2^{(2^2)})}=2^{(2^{4})}=2^{16}=65536$$ $${^{3}3}=3^{3^3}=3^{(3^3)}=3^{27}=7625597484987$$ $${^{4}3}=3^{3^{3^3}}=3^{(3^{(3^3)})}=3^{(3^{27})}=3^{7625597484987}=\ldots$$ liczba składająca się z $$3638334640025$$ cyfr 🙂 Tetrację… Read More Tetracja i nieskończona wieża wykładnicza
Po dłuższej przerwie zaczynam od czegoś lekkiego – dziś w cyklu „Matematyka w obrazkach” pojedynek geometrii euklidesowej ze szczególną teorią względności 🙂 Ciekawostki o pewnych równoważnościach: Twierdzenie Pitagorasa jest równoważne z V aksjomatem geometrii euklidesowej, (tzw. Postulatem Euklidesa, inaczej postulatem równoległości). $E=mc^2$ wywodzi się ze szczególnej teorii względności opracowanej przez Alberta Einsteina przedstawiając dwa różne typy… Read More Matematyka w obrazkach #17 – Pitagoras vs Einstein
Kontynuując przeglądanie strony, wyrażasz zgodę na używanie przez nas plików cookies. więcej informacji
Aby zapewnić Tobie najwyższy poziom realizacji usługi, opcje ciasteczek na tej stronie są ustawione na "zezwalaj na pliki cookies". Kontynuując przeglądanie strony bez zmiany ustawień lub klikając przycisk "Akceptuję" zgadzasz się na ich wykorzystanie.