Ciekawostki, Matematyka, Teoria liczb

Tetracja i nieskończona wieża wykładnicza

Tetracja (wieża wykładnicza, super-potęgowanie, iterowane potęgowanie, 4 hiper-operator) Tetracja to działanie dwuargumentowe definiowane jako wielokrotne potęgowanie elementu przez siebie. Definicja: dla dowolnej liczby rzeczywistej $a>0$ i nieujemnej liczby całkowitej $n\geq 0$ tetrację $n$ liczby $a$ definiujemy jako: $${^{n}a}=\begin{cases}1&\text{dla}\quad n=0\\a&\text{dla}\quad n=1\\ \underbrace{a^{a^{\cdots^{a}}}}_{n}&\text{dla}\quad n>1\end{cases}$$ Przykłady $${^{3}2}=2^{2^2}=2^{(2^2)}=2^4=16$$ $${^{4}2}=2^{2^{2^2}}=2^{(2^{(2^2)})}=2^{(2^{4})}=2^{16}=65536$$ $${^{3}3}=3^{3^3}=3^{(3^3)}=3^{27}=7625597484987$$ $${^{4}3}=3^{3^{3^3}}=3^{(3^{(3^3)})}=3^{(3^{27})}=3^{7625597484987}=\ldots$$ liczba składająca się z $$3638334640025$$ cyfr 🙂 Tetrację… Read More Tetracja i nieskończona wieża wykładnicza

Ciekawostki, Fizyka, Matematyka

Matematyka w obrazkach #17 – Pitagoras vs Einstein

Po dłuższej przerwie zaczynam od czegoś lekkiego – dziś w cyklu „Matematyka w obrazkach” pojedynek geometrii euklidesowej ze szczególną teorią względności 🙂 Ciekawostki o pewnych równoważnościach: Twierdzenie Pitagorasa jest równoważne z V aksjomatem geometrii euklidesowej, (tzw. Postulatem Euklidesa, inaczej postulatem równoległości). $E=mc^2$ wywodzi się ze szczególnej teorii względności opracowanej przez Alberta Einsteina przedstawiając dwa różne typy… Read More Matematyka w obrazkach #17 – Pitagoras vs Einstein