O liczbie e – Część 2 – Dlaczego jest tak „naturalna” – Funkcja wykładnicza i pochodna eˣ

Funkcja e do x (e^x)

„Plaża, piękna pogoda, sielanka i relaks! Różne funkcje wypoczywają. Nagle … popłoch, panika! Funkcje uciekają. Tylko jedna nadal się opala.

– Co robisz? Uciekaj! Nadchodzi operator różniczkowy!

– Nie boję się, jestem $e^x$. 

I tak spokojna $e^x$ została. Wpada operator.

– Wrrr! Teraz Cię zróżniczkuję! Wrrr!

– A proszę bardzo – jestem $e^x$ – nic mi nie grozi.

– Kochana, ja różniczkuję po $dy$”

Ten iście „nerdowski” dowcip całkiem dobrze rozpoczyna kolejną część serii „o liczbie e”. Na bazie pochodnej przedstawię dodatkowe argumenty „dlaczego?” liczba e jest tak naturalna. Zaczynamy od powtórki podstaw w zakresie potęgowania. Prawdopodobnie zaskoczę Cię już samą definicją funkcji wykładniczej $a^x$ 🙂

Definicja funkcji wykładniczej na bazie potęgowania

Czytaj dalej

O liczbie e – Część 1 – Dlaczego jest tak „naturalna” – Procent składany

Liczba e

Funkcja wykładnicza i logarytm wprowadzane są w szkole średniej (przynajmniej tak było w moim przypadku). Zazwyczaj wtedy poznajemy liczbę $e$, którą magicznie nazywa się podstawą logarytmu naturalnego.

$$e\approx 2.718\ldots$$

Nazwa dobrana jest świetnie, niestety nikt nie tłumaczy dlaczego tak właściwie jest. Cała sprawa jest niezwykle ciekawa, jej wyjaśnienie to temat nowej serii artykułów „o liczbie e”. Tym samym wzbogacam cykl „dlaczego?”. Dowody przeprowadzę „metodą elementarną” – wszak chodzi o „pierwotność / naturalność” $e$. Będzie kilka dużych „odcinków” – zapraszam 🙂

Nota historyczna

Liczba e pojawia się w wielu dziedzinach. W matematyce jest wszechobecna! Z powodzeniem dorównuje liczbie $\pi$. Analiza matematyczna (w szczególności rachunek różniczkowy i całkowy, równania różniczkowe), funkcje specjalne, analiza zespolona, rachunek prawdopodobieństwa, statystyka matematyczna – to najbardziej wyraziste przykłady. W innych naukach ścisłych (np.: ekonomia, fizyka, biologia) liczba e pojawia się w wielu ważnych równaniach, w tym: równanie przewodnictwa cieplnego, wzór barometryczny, rozpady promieniotwórcze, fazory, funkcja falowa w mechanice kwantowejwzrost populacji, procent składany.

Pierwsze informacje na temat liczby e pojawiły się w 1618 roku. Opublikował je John Napier, przygotowując tabele logarytmów. Praca nie zawierała samej stałej, prezentowała niektóre wartości logarytmów na bazie e. Liczbę e w jej dzisiejszej postaci odkrył Jacob Bernoulli. Dokonał tego w 1683 roku analizując własności procentu składanego. Pierwsze udokumentowane wykorzystanie liczby e, wtedy oznaczanej przez b, pojawiło się w latach 1690-1691 (Gottfried Leibniz, Christiaan Huygens). Wykorzystanie stałej znacząco rozwinął Leonhard Euler oznaczając ją w 1727 roku do dziś wykorzystywanym symbolem $e$.

Procent składany

Czytaj dalej

Matematyka w obrazkach #25 – Duch – Atraktor Lorenza :-)

Grafika wykonana na bazie Atraktora Lorenza – świetne wzbogacenie cyklu „Matematyka w obrazkach” 🙂

Atraktor Lorenza - duch

Polecam poniższą animację – 500 tysięcy ciasno upakowanych cząstek rozchodzi się w chaos. Cząstki to punkty z rozkładu Gaussa z odchyleniem standardowym 0.01. W miarę upływu czasu cząstki podążają za dynamiką Lorenza.

Zajrzyj również tutaj: Matematyka w obrazkach #16 – Mathistopheles – Atraktor Lorenza 🙂

Pozdrowienia,

Mariusz Gromada

Liczba e ukryta w sumie rozkładów jednostajnych

Wyróżnione

Rozkład jednostajny na odcinku $$(0,1)$$, chyba najprostszy z możliwych rozkładów ciągłych, z pozoru niezbyt interesujący, a jednak 🙂 Dziś ciekawostka wiążąca rozkład sumy rozkładów jednostajnych z liczbą Eulera e.

Uniform Sum Distribution

Rozkład jednostajny ciągły na odcinku (a,b)

Rozkład jednostajny ciągły na odcinku $$(a,b)$$ jest opisany poniższą funkcją gęstości.

$$f(x)=\begin{cases}\frac{1}{b-a}&&\text{dla }a\leq x\leq b\\0&&\text{w p.p.}\end{cases}$$

Pisząc $$X\sim U(a,b)$$ oznaczamy, że zmienna losowa $$X$$ ma rozkład jednostajny ciągły na odcinku $$(a,b)$$. Jest to rozkład ciągły, zatem przyjęcie wartości $$0$$ lub $$\frac{1}{b-a}$$ w punktach $$x=a$$ i $$x=b$$ jest umowne i nie ma zwykle wpływu na własności i rozważania.

Czytaj dalej

Matematyka w obrazkach #20 – Optimus Prime

W nawiązaniu do liczb pierwszych, którym poświęcony był wczorajszy wpis „Liczba π ukryta w liczbach pierwszych”, prezentuję postać z uniwersum Transfomers. Szanowni Czytelnicy – w cyklu „Matematyka w obrazkach”„Jego Królewska Mość”Optimus Prime – przywódca Autobotów 🙂

Optimus Prime Numbers

Pozdrowienia 🙂

Mariusz Gromada

Liczba π (Pi) ukryta w liczbach pierwszych

Wyróżnione

Liczba $\pi$ ukryta w liczbach pierwszych? Jak to możliwe? Przecież liczby pierwsze to „chaos”, a $\pi$ ma ścisły związek z najbardziej regularnym obiektem geometrycznym – tzn. z okręgiem / kołem.

Prime Pi

Czym jest $\pi$?

  • $\pi$ to stosunek obwodu koła do jego średnicy.
  • $\pi$ to pole powierzchni koła o promieniu $1$.
  • $\pi$ to połowa obwodu koła o promieniu $1$.
  • $\pi$ to $\frac{1}{4}$ pola powierzchni sfery o promieniu $1$.
  • $\pi$ to $\frac{3}{4}$ objętości kuli o promieniu $1$.
  • $k\pi$ dla całkowitych $k$ to miejsca zerowe funkcji $\sin x$.
  • … i wiele innych …

Czym są liczby pierwsze?

  • Liczba pierwsza to liczba naturalna $n\in\mathbb{N}$ większa od $1$, której jednymi dzielnikami są $1$ oraz $n$.
  • Liczby pierwsze to „atomy” w teorii liczb, tzn. każdą liczbę naturalną można rozłożyć na iloczyn liczb pierwszych.
  • Rozmieszczenie liczb pierwszych wśród liczb naturalnych spełnia pewne zależności statystyczne, jednak nie jest znany żaden precyzyjny wzór dla określenia $n-tej$ liczby pierwszej. Ciekawskich odsyłam do artykułu „Prime-counting function”.

Czytaj dalej

Matematyka w obrazkach #19 – Oko Mandelbrota

W cyklu „Matematyka w obrazkach” – nowe logo MathSpace.pl

Motywacja

Motywując postać nowego logo przytoczę cytaty, którymi posłużyłem się otwierając serię o „Geometrii fraktalnej” – wpis „Fraktalne oblicze natury”.

„Geometria fraktalna sprawi, że inaczej spojrzysz na świat. Ostrzegam – zgłębianie tej wiedzy wiąże się z niebezpieczeństwem. Ryzykujesz utratę części wyobrażeń z dzieciństwa – szczególnie tych dotyczących chmur, lasów, kwiatów, galaktyk, liści, piór, skał, gór, potoków, i wielu innych. Twoja interpretacja przyrody zmieni się całkowicie i na zawsze.”

Michael F. Barnsley

 

„W kwestii fraktali zobaczyć znaczy uwierzyć”

Benoit Mandelbrot

 

Pozdrowienia,

Mariusz Gromada

Tetracja i nieskończona wieża wykładnicza

Tetracja - definicja

Tetracja (wieża wykładnicza, super-potęgowanie, iterowane potęgowanie, 4 hiper-operator)

Tetracja to działanie dwuargumentowe definiowane jako wielokrotne potęgowanie elementu przez siebie.

Definicja: dla dowolnej liczby rzeczywistej $a>0$ i nieujemnej liczby całkowitej $n\geq 0$ tetrację $n$ liczby $a$ definiujemy jako:

$${^{n}a}=\begin{cases}1&\text{dla}\quad n=0\\a&\text{dla}\quad n=1\\ \underbrace{a^{a^{\cdots^{a}}}}_{n}&\text{dla}\quad n>1\end{cases}$$

Przykłady

$${^{3}2}=2^{2^2}=2^{(2^2)}=2^4=16$$

$${^{4}2}=2^{2^{2^2}}=2^{(2^{(2^2)})}=2^{(2^{4})}=2^{16}=65536$$

$${^{3}3}=3^{3^3}=3^{(3^3)}=3^{27}=7625597484987$$

$${^{4}3}=3^{3^{3^3}}=3^{(3^{(3^3)})}=3^{(3^{27})}=3^{7625597484987}=\ldots$$ liczba składająca się z $$3638334640025$$ cyfr 🙂

Tetrację można wykorzystać do zapisu naprawdę dużych liczb, co dobrze obrazuje przykład ${^{4}3}$. Tetrację wygodnie jest również definiować w postaci rekurencyjnej.

Definicja rekurencyjna: dla dowolnej liczby rzeczywistej $a>0$ i nieujemnej liczby całkowitej $n\geq 0$ tetrację $n$ liczby $a$ definiujemy jako:

$${^{n}a}=\begin{cases}1&\text{dla}\quad n=0\\a^{{^{n-1}a}}&\text{dla}\quad n\geq 1\end{cases}$$

Czytaj dalej

Matematyka w obrazkach #17 – Pitagoras vs Einstein

Po dłuższej przerwie zaczynam od czegoś lekkiego – dziś w cyklu „Matematyka w obrazkach” pojedynek geometrii euklidesowej ze szczególną teorią względności 🙂

Pitagoras vs Einstein

Ciekawostki o pewnych równoważnościach:

  • Twierdzenie Pitagorasa jest równoważne z V aksjomatem geometrii euklidesowej, (tzw. Postulatem Euklidesa, inaczej postulatem równoległości).
  • $E=mc^2$ wywodzi się ze szczególnej teorii względności opracowanej przez Alberta Einsteina przedstawiając dwa różne typy równoważności masy i energii:
    • Równoważność masy i energii spoczynkowej.
    • Równoważność masy relatywistycznej (choć to sztuczny termin i relikt – masa jest jedna!) i energii całkowitej.
  • Ogólna teoria względności jest uogólnieniem szczególnej teorii względności. Korzysta ona między innymi z metod geometrii nieeuklidesowej (np. stwierdzenie, że siła grawitacji wynika z lokalnej geometrii czasoprzestrzeni). Zatem, w pewnym sensie, powyższy pojedynek to starcie między geometrią euklidesową a geometrią nieeuklidesową 🙂

Pozdrowienia,

Mariusz Gromada

Matematyka w obrazkach #16 – Mathistopheles – Atraktor Lorenza :-)

Dziś, przeglądając Twittera, natknąłem się na profil @Mathistopheles – Thomas Oléron Evans. Zdjęcie profilowe jest genialne – wykonane na bazie Atraktora Lorenza – musiałem dodać do cyklu „Matematyka w obrazkach” 🙂 Równie ciekawe jest zdjęcie w tle 🙂

Atraktor Lorenza

Pozdrowienia,

Mariusz Gromada

Personalizowany kubek MathSpace.PL :-)

Kubek na bazie motywu „Matematyka w obrazkach #11 – Dobre argumenty to podstawa”. Kubek wygląda świetnie 🙂

Personalizowany kubek MathSpace.PL

Personalizacja kubka

  • Imię / nick / … w chmurce;
  • Dedykowany wzór / formuła w chmurce;

Jak otrzymać kubek?

Warunki, które musisz spełnić:

  • Polubienie profilu MathSpace.PL na Facebooku lub Twitterze lub subskrypcja newslettera;
  • Przesłanie wiadomości (Facebook, Twitter, mail) o chęci zamówienia kubka + opis personalizacji;
  • Zapoznanie się z procesem zamówienia kubka.

Jak wygląda proces zamówienia kubka?

  • Jestem autorem projektu + dokonuję wskazanej personalizacji;
  • Kubki zamawiam w Waszym imieniu poprzez fotokubek.net: kubek biały reklamowy 330 ml z nadrukiem;
  • Nie zarabiam na kubkach!!! Zamawiając poniesiesz opłatę zgodnie z cennikiem fotokubek.net + koszt wysyłki;
  • Otrzymujesz kubek, nie udostępniam projektu (graficznego) kubka;
  • Dodatkowe informacje w indywidualnej korespondencji.

Pozdrowienia,

Mariusz Gromada