Błądzenie losowe jest dosyć podstawowym przykładem procesu stochastycznego. Poniżej wykres 20 błądzeń losowych, każda ścieżka o długości 200. Wszystkie ścieżki rozpoczynają w tym samym punkcie, następnie w każdym kolejnym kroku podejmowana jest losowa decyzja odnośnie kierunku „dół / góra”. Każdy kierunek jest równo prawdopodobny, wybór kierunku w danym kroku nie zależy od decyzji dokonanych poprzednio.
Prawo iterowanego logarytmu
Można zauważyć, że ścieżki pozostają skupione wokół punktu początkowego, jednak średnia odległość od tego punktu rośnie wraz ze wzrostem liczby kroków – co ciekawe – odległość rośnie wolniej niż liniowo, rośnie zgodnie z $\sqrt{n}$. Ogólnie zespół twierdzeń rachunku prawdopodobieństwa opisujących rozmiar fluktuacji w błądzeniu losowym określa się mianem prawa iterowanego logarytmu.
Pozdrowienia,
Mariusz Gromada
Poza Liczbami: Inne Twórcze Przestrzenie
Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury
Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury, które wykorzystują matematyczne wzory i proporcje do tworzenia estetycznych i emocjonalnych doznań. Z nieśmiałą ekscytacją przedstawiam moją pierwszą poważniejszą kompozycję, w której starałem się uchwycić te połączenia.
Scalar – zaawansowana aplikacja mobilna z silnikiem matematycznym mojego autorstwa
Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury
Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury, które wykorzystują matematyczne wzory i proporcje do tworzenia estetycznych i emocjonalnych doznań. Z nieśmiałą ekscytacją przedstawiam moją pierwszą poważniejszą kompozycję, w której starałem się uchwycić te połączenia.
Scalar – zaawansowana aplikacja mobilna z silnikiem matematycznym mojego autorstwa
Początki matematyki to liczby naturalne $\mathbb{N} = \{1,2,3,\ldots\}$, czyli narzędzie służące do opisu liczności (np. trzy elementy) lub do podawania kolejności (np. trzecia osoba). Z biegiem czasu do liczb wprowadzono pierwsze działania– dodawanie i mnożenie. Z łatwością można wykazać, że liczby naturalne są zamknięte ze względu na dodawanie i mnożenie – jednak nim przejdziemy dalej – wyjaśnię w kilku słowach co to tak naprawdę oznacza.
Zamkniętość zbioru ze względu na działanie
Rozważmy dowolny zbiór $A$ oraz dwuargumentowe działanie $a*b$ określone na elementach $a, b \in A$.
Mówimy, że zbiór $A$ jest zamknięty ze względu na działanie $*$ jeśli dla dowolnych $a, b \in A$ istnieje $c \in A$, że $c=a*b$.
Inaczej mówiąc, zbiór jest zamknięty ze względu na dane działanie jeśli wszystkie możliwe wyniki wskazanego działania (na elementach rozważanego zbioru) są również elementami tego zbioru.W analogi do dodawania i mnożenia liczb naturalnych możemy stwierdzić, że suma dwóch liczb naturalnych jest liczbą naturalną, a w konsekwencji mnożenie dwóch liczb naturalnych daje także wynik w liczbach naturalnych.
$$\Big(\mathbb{N}, +, \times\Big)$$
Wraz z rozwojem matematyki wprowadzano kolejne działania, które ujawniły „niekompletność” zbioru liczb naturalnych.
Liczby całkowite $\mathbb{Z}$ jako „domknięcie” odejmowania „-„
Wprowadzenie odejmowania pokazało, że liczby naturalne nie są zamknięte ze względu na to działanie. Dla wielu liczb naturalnych wynik odejmowania jest liczbą naturalną, jednak istnieje równie wiele przykładów uzasadniających wniosek przeciwny, np.:
$$2-5 = -3 \notin \mathbb{N}$$
Uzupełniając liczby naturalne o liczby do nich przeciwne oraz 0 otrzymujemy liczby całkowite $\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3,\ldots\}$ zamknięte również ze względu na odejmowanie.
$$\Big(\mathbb{Z}, +, \times,-\Big)$$
Liczby wymierne $\mathbb{Q}$ jako „domknięcie” dzielenia $\frac{\cdot}{\cdot}$
Liczby wymierne wyrażając proporcję (stosunek) pomiędzy wielkościami powstają z ilorazu dwóch liczb całkowitych.
Każdą liczbę wymierną można zapisać jako ułamek, tzn. $\mathbb{Q}=\Big\{\frac{m}{n}:m,n\in\mathbb{Z},n\neq 0\Big\}$ gdzie $m, n$ są liczbami całkowitymi, a $n$ jest różne od 0.
I choć dla części liczb naturalnych ich iloraz jest również liczbą naturalną (np. 10 / 2 = 5), to istnieje równie wiele przypadków sytuacji odwrotnej, np.
$$\frac{1}{5}\notin\mathbb{Z}$$
Liczby wymierne są zamknięte ze względu na iloraz (z pominięciem 0 – gdyż dzielenie przez 0 nie jest określone).
Liczby algebraiczne jako „częściowe domknięcie” pierwiastkowania $\sqrt{\cdot}$ i potęgowania ${m}^{n}$.
Już Pitagoras potrafił wykazać że długości przekątnej jednostkowego kwadratu nie da się wyrazić jako stosunku ówcześnie znanych liczb. Z twierdzenia Pitagorasa łatwo zapisujemy
$$x^2=1^2+1^2$$
$$x^2=2$$
$$x=+/-\sqrt{2}\notin\mathbb{Q}$$
Pierwiastek z liczby 2 nie jest liczbą wymierną, podobnie jak i $\sqrt{3}$, $\sqrt{5}$, … Zapiszmy nieco ogólniej
$$x^2-2=0$$
Zatem pierwiastek z liczby 2 jest zerem wielomianu (pierwiastkiem wielomianu) o wymiernych współczynnikach.
Liczby algebraiczne, zdefiniowane jako rozwiązania wielomianów o wymiernych współczynnikach, są pierwszym etapem „domknięcia” liczb wymiernych.
Liczby rzeczywiste $\mathbb{R}$ jako granice ciągów liczb wymiernych.
Liczby wymierne (nawet rozszerzone o liczby algebraiczne) nie są zupełne.
Mówimy, że ciąg spełnia warunek Cauchy’ego, jeśli dla ustalonej dowolnie małej liczby, pomijając skończoną liczbę elementów ciągu, „odległość” pomiędzy pozostałymi dowolnymi dwoma elementami ciągu nie przekracza ustalonej wartości.
Dobrym i bardzo znanym przykładem jest ciąg definiujący podstawę logarytmu naturalnego
$$a_n=(1+\frac{1}{n})^n$$
Każdy element ciągu jest liczbą wymierną, gdyż powstaje z mnożenia liczb wymiernych. Ciąg ten spełnia warunek Cauchy’ego, jest zbieżny, jednak jego granica nie istnieje w liczbach wymiernych.
$$\lim a_n=e\notin\mathbb{Q}$$
Liczba e nie jest liczbą wymierną, nie jest również liczbą algebraiczną, Liczba e jest przykładem kolejnej klasy liczb „uzupełniających braki” w liczbach wymiernych.
Liczby nienależące do zbioru liczb wymiernych, które są granicami ciągów liczb wymiernych spełniających warunek Cauchy’ego, nazywamy liczbami niewymiernymi.
Niektóre z liczb niewymiernych są liczbami algebraicznymi (np. $\sqrt{2}$), jednak znaczna ich większość to liczby przestępne, czyli takie, które nie są pierwiastkiem żadnego wielomianu o współczynnikach wymiernych.
Liczby zespolone jako „domknięcie” pierwiastkowania $\sqrt{-1}$
Świat szedł do przodu, matematyka odkrywała kolejne wzory opisujące rzeczywistość. W XVI wieku ponownie napotkano problem „niezupełności” liczb i działań. Trudność pojawiła się w momencie wyprowadzania wzoru na pierwiastki wielomianu stopnia 3. Każdy wielomian stopnia 3 ma przynajmniej jedno miejsce zerowe, jednak okazało się, że konstrukcja wzoru podającego te pierwiastki wymaga założenia istnienia wartości $\sqrt{-1}$. Tak powstały liczby zespolone, których znaczenie jest dużo bardziej głębokie niż wartość $\sqrt{-1}$ oraz wzory Cardano dla równań sześciennych. Liczby zespolone to całkowicie nowy wymiar liczb, wymiar ukryty, mimo wszystko pojawiający się w niemal każdej empirycznej dziedzinie nauki z fizyką na czele…
… ale o tym w kolejnej części cyklu…
Pozdrowienia,
Mariusz Gromada
Poza Liczbami: Inne Twórcze Przestrzenie
Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury
Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury, które wykorzystują matematyczne wzory i proporcje do tworzenia estetycznych i emocjonalnych doznań. Z nieśmiałą ekscytacją przedstawiam moją pierwszą poważniejszą kompozycję, w której starałem się uchwycić te połączenia.
Scalar – zaawansowana aplikacja mobilna z silnikiem matematycznym mojego autorstwa
Z pewnością każdy wie, że wynikiem mnożenia liczb ujemnych jest liczba dodania. Formułka „minus razy minus daje plus” była nam wtłaczana do głów w trakcie wczesnych lat szkolnych. Nauczyciele zapomnieli jednak wyjaśnić dlaczego tak właśnie jest, oraz przybliżyć motywację matematyków definiujących arytmetykę liczb ujemnych.
Mnożenie jako skrócone dodawanie
Mówi się, że mnożenie to skrócone dodawanie, co jest w zupełności prawdą i, przy ograniczeniu do liczb całkowitych, faktem dosyć oczywistym.
$$3\times 4 = 3 + 3 + 3 + 3 = 4 + 4 + 4 = 12$$
Mnożenie jest przemienne i rozdzielne względem dodawania
Te dwie fundamentalne własności mnożenia zapisujemy jako
przemienność $a\times b = b\times a$
przykład $3\times 4 = 4\times 3=12$
rozdzielność $a\times (b+c)=a\times b + a\times c$
Mnożenie liczb ujemnych z punktu widzenia matematyka
Matematycy, definiując arytmetykę liczb ujemnych, chcieli zachować spójność z już rozwiniętą arytmetyką liczb dodatnich i zera. Opierając się na interpretacji skróconego dodawania łatwo uzasadniamy następujące:
$$-3\times 4 = (-3)+(-3)+(-3)+(-3)=-12$$
„Dodając dług do długu” otrzymujemy większy dług – intuicyjne. Teraz wykorzystując przemienność mnożenia otrzymujemy:
$$4\times (-3)=-3\times 4=-12$$
W tym momencie z intuicją już trochę trudniej, natomiast spójność została zachowana. Czas przejść do meritum – tzn spróbujmy odpowiedzieć na pytanie:
$$-3\times (-4)=?$$
Do rozwiązania powyższego zastosujemy trick na bazie rozdzielność mnożenia względem dodawania.
$$-3\times 0=0$$
$$-3\times 0=-3\times(-4+4)=0$$
$$-3\times(-4+4)=-3\times (-4)+(-3)\times 4=0$$
$$-3\times(-4)+(-12)=0$$
$$-3\times(-4)=12$$
Powyższe z intuicją nie ma nic wspólnego, jednak jest spójne, tzn. na bazie arytmetyki liczb dodatnich i zera, przemienności mnożenia, rozdzielności mnożenia względem dodawania, jesteśmy w stanie uzasadnić dlaczego mnożenie liczb ujemnych musi być liczbą dodatnią.
Mnożenie liczb ujemnych jako zmniejszenie straty
Załóżmy, że mnożymy dwie liczby, gdzie interpretacja pierwszej to wartość zysku bądź starty, natomiast znaczenie drugiej to zwielokrotnienie (zwiększenie / zmniejszenie) pierwszej wartości. W takiej sytuacji mnożenie dwóch liczb ujemnych oznacza zmniejszenie straty, czyli łączny efekt dodatni działania.
Powyższe wyjaśnienie można określić mianem intuicyjnego 🙂
I na koniec film od Mathologer’a wyjaśniający powyższy problem (materiał, na którym wzorowałem powyższy wpis).
Pozdrowienia,
Mariusz Gromada
Poza Liczbami: Inne Twórcze Przestrzenie
Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury
Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury, które wykorzystują matematyczne wzory i proporcje do tworzenia estetycznych i emocjonalnych doznań. Z nieśmiałą ekscytacją przedstawiam moją pierwszą poważniejszą kompozycję, w której starałem się uchwycić te połączenia.
Scalar – zaawansowana aplikacja mobilna z silnikiem matematycznym mojego autorstwa
Skalar - kalkulator, funkcje, wykresy i skrypty - Made in Poland
Skalar to potężny silnik matematyczny i matematyczny język skryptowy, który zbudowany jest na bazie MathParser.org-mXparser
Kliknij na wideo i zobacz Skalara w akcji 🙂
Scalar Lite – wersja lite
Scalar Pro – wersja profesjonalna
Kontynuując przeglądanie strony, wyrażasz zgodę na używanie przez nas plików cookies. więcej informacji
Aby zapewnić Tobie najwyższy poziom realizacji usługi, opcje ciasteczek na tej stronie są ustawione na "zezwalaj na pliki cookies". Kontynuując przeglądanie strony bez zmiany ustawień lub klikając przycisk "Akceptuję" zgadzasz się na ich wykorzystanie.