Receiver Operating Characteristic – Krzywa ROC – czyli ocena jakości klasyfikacji (część 7)

Krzywa ROC - AUROC - Receiver Operating Characteristic

Receiver Operating Characteristic – Krzywa ROC – geneza nazwy

Termin „Krzywa ROC” wywodzi się z teorii detekcji sygnałów, której zadaniem jest odróżnienie sygnału będącego informacją (np. sygnały z maszyn / urządzeń elektronicznych, bodźce pochodzące z organizmów żywych) od wzorców przypadkowych nie zawierających informacji (szum, tło, aktywność losowa). Pierwsze wykorzystanie krzywej ROC datuję się na okres II Wojny Światowej. Po ataku na Pearl Harbor w 1941, USA zaczęły poszukiwać lepszej metody analizy sygnałów radarowych w celu zwiększenia wykrywalności Japońskich samolotów.

Receiver Operating Characteristic – Krzywa ROC – definicja

W statystyce matematycznej krzywa ROC jest graficzną reprezentacją efektywności modelu predykcyjnego poprzez wykreślenie charakterystyki jakościowej klasyfikatorów binarnych powstałych z modelu przy zastosowaniu wielu różnych punktów odcięcia. Mówiąc inaczej – każdy punkt krzywej ROC odpowiada innej macierzy błędu (zobacz tutaj) uzyskanej przez modyfikowanie „cut-off point” (zobacz tu). Im więcej różnych punktów odcięcia zbadamy, tym więcej uzyskamy punktów na krzywej ROC. Finalnie na wykres nanosimy TPR (True-Positive Rate – oś pionowa) oraz FPR (False-Positive Rate – oś pozioma).

$c$ – punkt odcięcia

$\quad$ $c\mapsto \Big(x(c),y(c)\Big)=\Big(FPR(c),TPR(c)\Big)$

Krzywa ROC - Receiver Operating Characteristic

Krzywa ROC, będąc funkcją punktu odcięcia, przedstawia zmienność TPR (miary pokrycia / wychwycenia klasy faktycznie pozytywnej) w zależności od FPR (poziomu błędu popełnianego na klasie faktycznie negatywnej). Jak zawsze chodzi o pewien kompromis, tzn. dobierając „cut-off” chcemy maksymalizować TPR „trzymając w ryzach” błąd FPR. Analiza relacji TPR(FPR) jest niezwykle przydatna, ale najpierw przypomnijmy kilka podstawowych definicji.

Krótkie przypomnienie podstawowych definicji

Macierz błędu

TPR, TNR, PPV, NPV

TPR True-Positive Rate (czyli czułość)

$$TPR=\frac{TP}{TP+FN}=P(pred=P|fakt=P)=$$

$$=P(pred=1|fakt=1)=P(1|1)$$

FPR False-Positive Rate (czyli 1-specyficzność)

$$FPR=\frac{FP}{FP+TN}=P(pred=P|fakt=N)=$$

$$P(pred=1|fakt=0)=P(1|0)=1-P(0|0)=1-TNR$$

Interpretacja ROC

ROC – Klasyfikator teoretycznie idealny + Klasyfikator losowy

Klasyfikator teoretycznie idealny reprezentowany jest przez punkt (0,1), natomiast klasyfikatory powstałe z modelu losowego „leżą” na prostej TPR=FPR.

Krzywa ROC - Interpretacja - Receiver Operating Characteristic

ROC – Punkt równowagi (czułość = specyficzność)

Punkt równowagi leży na przecięciu ROC z prostą TPR = 1-FPR = TNR i reprezentuje „cut-off” point, dla którego klasyfikator osiąga równowagę czułość = specyficzność.

Krzywa ROC - Punkt równowagi - Receiver Operating Characteristic

ROC – Współczynnik Giniego

Współczynnik Giniego to pole powierzani pomiędzy krzywą ROC dla badanego modelu oraz krzywą ROC dla modelu losowego w interpretacji procentowej do wartości 1/2 – czyli pola powierzchni dla klasyfikatora teoretycznie idealnego. Współczynnik Giniego jest doskonałą miarą jakości modelu i może być interpretowany jako % „idealności” danego modelu predykcyjnego.

Krzywa ROC - Współczynnik Giniego - Receiver Operating Characteristic

  • Im większy wskaźnik Giniego tym lepiej
  • Wartość wskaźnika Giniego nie zależy od apriori (teoretycznie), w praktyce trudniej o silny model jeśli apriori jest duże
  • Gini = 100% dla modelu teoretycznie idealnego
  • Gini = 0% dla modelu losowego

Pole powierzani pod krzywą ROC – AUC, AUROC

Tym razem wyznaczamy całość pola powierzchni pod wykresem ROC odnosząc wartość do analogicznego pola dla modelu idealnego – w tym przypadku pola kwadratu o boku 1. Interpretacja AUROC (Area Under the ROC) to prawdopodobieństwo, że badany model predykcyjny oceni wyżej (wartość score) losowy element klasy pozytywnej od losowego elementu klasy negatywnej.

Krzywa ROC - AUROC - Receiver Operating Characteristic

  • Im większy wskaźnik AUROC tym lepiej
  • Wartość AUROC nie zależy od apriori (teoretycznie), w praktyce trudniej o silny model jeśli apriori jest duże
  • AUROC = 100% dla modelu teoretycznie idealnego
  • AUROC = 50% dla modelu losowego
  • AUROC = 0% dla modelu idealnego klasy przeciwnej do pozytywnej

Ciąg dalszy nastąpi …

Pozdrowienia,

Mariusz Gromada

Poza Liczbami: Inne Twórcze Przestrzenie

Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury

Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury, które wykorzystują matematyczne wzory i proporcje do tworzenia estetycznych i emocjonalnych doznań. Z nieśmiałą ekscytacją przedstawiam moją pierwszą poważniejszą kompozycję, w której starałem się uchwycić te połączenia.

I Am Here – RELEARN – Mariusz Gromada (2024)
I Am Here – RELEARN – Mariusz Gromada (2024)
Deep Under – RELEARN – Mariusz Gromada (2024)
Deep Under – RELEARN – Mariusz Gromada (2024)

Scalar – zaawansowana aplikacja mobilna z silnikiem matematycznym mojego autorstwa

Views All Time
Views All Time
38295
Views Today
Views Today
9

3 komentarze

    1. Dokładnie, ROC to super koncept! W praktyce zdarza się, że zagęszczenie próby wpływa na siłę modelu – im większe naturalne apriori tym mniej charakterystyczne ogony, tym trudniej dopasować dobry model. Dlatego mimo wszystko warto pamiętać o apriori. W kolejnym odcinku pokaże, że apriori to pomost pomiędzy ROC i Capture Response 🙂

  1. Dzień dobry, mam na studia zadanie właśnie z ROC ale w ogóle tego nie rozumie, jest możliwość wytłumaczenia/pomocy?
    Pozdrawiam

Dodaj komentarz

Twój adres e-mail nie zostanie opublikowany. Wymagane pola są oznaczone *