Cykl „Matematyka w obrazkach” – część #12 – Devil vs Evil – rozstrzygamy co było pierwsze 🙂
Znasz odpowiedź? Wpisz w komentarzu 🙂
Pozdrowienia,
Mariusz Gromada

Views All Time
2858

Views Today
1
Cykl „Matematyka w obrazkach” – część #12 – Devil vs Evil – rozstrzygamy co było pierwsze 🙂
Znasz odpowiedź? Wpisz w komentarzu 🙂
Pozdrowienia,
Mariusz Gromada
Kontynuując przeglądanie strony, wyrażasz zgodę na używanie przez nas plików cookies. więcej informacji
Aby zapewnić Tobie najwyższy poziom realizacji usługi, opcje ciasteczek na tej stronie są ustawione na "zezwalaj na pliki cookies". Kontynuując przeglądanie strony bez zmiany ustawień lub klikając przycisk "Akceptuję" zgadzasz się na ich wykorzystanie.
jakbyś to trochę popodnosił i poopuszczał to łatwiej byłoby te pochodne liczyć 🙂
Dobra to ja zacznę:
Całka nieznaczona z xdy wynosi xy+C (constant)
mnożenie jest przemienne więc całka nieoznaczona z evil dd daje devil+C.
Tyle o górnej łamigłówce.
Dolną najprościej byłoby poskreślać ułamkami licząc że to zmienne ale tak nie jest.
Przychodzi mi tylko na myśl tylko to że: f`(x)=df/dx Lagrange?
i że dy/dx bierze pochodną y w odniesieniu do x. A d/dx bierze pochodną w odniesieniu do x ale…nie do końca bo zakładamy że y jest naszym dowolnym wyrażeniem z którego możemy wyliczyć pochodną. Brak mi właśnie tego wyrażenia. Na dziś dam sobie spokój pomyślę jutro.
To jest jedna łamigłówka 🙂 Trzeba odpowiedzieć co było pierwsze 🙂 Devil czy Evil? 🙂
BTW: górna poprawnie odczytana, dolna przekombinowałeś 🙂 Podpowiedź: ile to jest np. d/dx x^2*a ? Albo d/dx x^3*a ?
Przekombinowałem. Jedyne co mi teraz przychodzi do głowy to to, że pochodna z x*n wynosi n, więc jeśli wynikiem miałby być devil to potrzebujemy jednego plemnika. Na 10 devili potrzeba 10 evili (evil=0 odpada). Skoro pochodna jest zmianą wartości funkcji względem zmian jej argumentów to im więcej devili tym więcej evili 🙂 A że grzech nie jest tam obcy więc tworzymy ładne piekiełko. Moim zdaniem evil był pierwszy.