„Geometria fraktalna sprawi, że inaczej spojrzysz na świat. Ostrzegam – zgłębianie tej wiedzy wiąże się z niebezpieczeństwem. Ryzykujesz utratę części wyobrażeń z dzieciństwa – szczególnie tych dotyczących chmur, lasów, kwiatów, galaktyk, liści, piór, skał, gór, potoków, i wielu innych. Twoja interpretacja przyrody zmieni się całkowicie i na zawsze.”
Michael F. Barnsley
„W kwestii fraktali zobaczyć znaczy uwierzyć”
Benoit Mandelbrot
Pozdrowienia,
Mariusz Gromada
Poza Liczbami: Inne Twórcze Przestrzenie
Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury
Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury, które wykorzystują matematyczne wzory i proporcje do tworzenia estetycznych i emocjonalnych doznań. Z nieśmiałą ekscytacją przedstawiam moją pierwszą poważniejszą kompozycję, w której starałem się uchwycić te połączenia.
Scalar – zaawansowana aplikacja mobilna z silnikiem matematycznym mojego autorstwa
Dziś ciekawostka w nawiązaniu do wpisu z dnia 20 października 2015 roku „Liczba PI ukryta w zbiorze Mandelbrota”, ujawniająca nietrywialne powiązanie liczby $\pi$ z prędkością ucieczki do nieskończoności przy zbliżaniu się punktu startu iteracji do „ostrza” zbioru Mandelbrota. Brzmi trochę skomplikowanie? Poniżej wyjaśnienie 🙂
Zbliżanie się do „ostrza” zbioru Mandelbrota
Rozważmy równanie rekurencyjne dla liczb rzeczywistych
Powyższe wyrażenie powstaje na bazie równania (w liczbach zespolonych) opisującego zbiór Mandelbrota
$$z_n=z_{n-1}^2+c$$
Ograniczając się do prostej rzeczywistej (dlatego użyłem zapisu $x_n$) przeanalizujmy zachowanie $x_n$ przy zbliżaniu się elementu $x_1=\frac{1}{4}+\epsilon$ do „ostrza” (ang. „cusp”) zbioru – ostrze to punkt o współrzędnych $(\frac{1}{4},0)$.
Szybkość ucieczki do nieskończoności
Ustalając odpowiednio małe $\epsilon>0$ decydujemy jak bardzo chcemy się zbliżyć do „ostrza”. Teraz zadanie polega na znalezieniu pierwszego $n$, dla którego $x_n>=2$. Takie minimalne $n$ jest dobrą miarą prędkości ucieczki $x_n$ do nieskończoności w zależności od wybranego $\epsilon$. Na marginesie dodam, że zbiór Juli dla równania Mandelbrota (na powyższym obrazku oznaczony kolorem czarnym), reprezentuje punkty „nieuciekające” do nieskończoności w trakcie nieskończonej iteracji . Ta tematyka jest sama w sobie bardzo ciekawa i zapewne kiedyś coś napiszę o atraktorach.
WOW! Jaki super wzorzec liczby wymaganych iteracji, aby przekroczyć 2! Dostajemy coś, co przypomina $\pi$, jednak wymaga postawienia „przecinka” w odpowiednim miejscu!Można również zauważyć, że 100-krotne zmniejszenie $\epsilon$ zwiększa niezbędną liczbę iteracji około 10-krotnie. Zmniejszając $\epsilon$ otrzymujemy liczbę coraz bardziej „przypominającą” $\pi$ 🙂
Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury
Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury, które wykorzystują matematyczne wzory i proporcje do tworzenia estetycznych i emocjonalnych doznań. Z nieśmiałą ekscytacją przedstawiam moją pierwszą poważniejszą kompozycję, w której starałem się uchwycić te połączenia.
Scalar – zaawansowana aplikacja mobilna z silnikiem matematycznym mojego autorstwa
Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury
Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury, które wykorzystują matematyczne wzory i proporcje do tworzenia estetycznych i emocjonalnych doznań. Z nieśmiałą ekscytacją przedstawiam moją pierwszą poważniejszą kompozycję, w której starałem się uchwycić te połączenia.
Scalar – zaawansowana aplikacja mobilna z silnikiem matematycznym mojego autorstwa
Skalar - kalkulator, funkcje, wykresy i skrypty - Made in Poland
Skalar to potężny silnik matematyczny i matematyczny język skryptowy, który zbudowany jest na bazie MathParser.org-mXparser
Kliknij na wideo i zobacz Skalara w akcji 🙂
Scalar Lite – wersja lite
Scalar Pro – wersja profesjonalna
Kontynuując przeglądanie strony, wyrażasz zgodę na używanie przez nas plików cookies. więcej informacji
Aby zapewnić Tobie najwyższy poziom realizacji usługi, opcje ciasteczek na tej stronie są ustawione na "zezwalaj na pliki cookies". Kontynuując przeglądanie strony bez zmiany ustawień lub klikając przycisk "Akceptuję" zgadzasz się na ich wykorzystanie.