Kwadrat skali podobieństwa – dlaczego tak właśnie zmienia się pole powierzchni figur płaskich podobnych?

Pole powierzchni figur podobnych zmienia się z kwadratem skali podobieństwa

Pole powierzchni figur płaskich podobnych zmienia się z kwadratem skali podobieństwa – fakt nauczany już w szkole podstawowej. Dziś zadajemy pytanie „dlaczego” tak jest? O ile uzasadnienie dla najprostszych typów figur jest banalne (wynika bezpośrednio ze wzorów na pole), to w przypadku powierzchni ograniczonej dowolną krzywą (no może nie do końca dowolną) potrzeba już nieco więcej gimnastyki. Pokażę kilka podjeść, w tym osobno „pokryciowe”, osobno oparte na całce Riemanna, oraz osobno na bazie przekształcenia liniowego. Na koniec podam bardziej ogólne wnioski co do zmiany pola powierzchni względem znacznie szerszej niż podobieństwo klasy transformacji. Zapraszam 🙂

Czym jest podobieństwo?

Czytaj dalej

Dlaczego pole powierzchni koła wynosi π·r²?

$P=\pi r^2$ to chyba najbardziej znany wzór, będący zarazem rzadko rozumianym 🙂 Choć wzór na pole powierzchni koła, bo o nim tu mowa, znany był już w Starożytnej Grecji, to jego uzasadnienie wcale nie jest łatwe. Jest to zatem świetny temat do wzbogacenia cyklu „Dlaczego?” 🙂 Do dzieła! 🙂

Pole powierzchni koła – wzór

Pole powierzchni koła - wzór

$$P=\pi r^2$$

Jak widać powyżej – kwadrat i koło, o tej samej powierzchni, nie są „jakoś intuicyjnie łatwo” powiązane. Więcej – wykazano nawet, że kwadratura koła (procedura wykonywana przy użyciu cyrkla i linijki bez podziałki) jest niewykonalna! I tu pojawia się genialny pomysł z prostokątem 🙂 Nim powiem o co chodzi przyjrzyjmy się co tak naprawdę mówi wzór $$\pi r^2$$.

Pole powierzchni kola - Pi r kwadrat

$\pi\times r^2$ – czyli w kole mieszczą się nieco ponad 3 kwadraty o boku r 🙂

Pole powierzchni koła – dowód przez animację 🙂

Koło - pole powierzchni - animacja

Trochę się napracowałem przy tej animacji 🙂

Pole powierzchni koła – wielokąty foremne

Uwaga – poniższe nie jest dowodem, a obrazuje jedynie sposób wnioskowania stosowany przez Starożytnych Greków (tak np. Archimedes wyznaczał liczbę pi).

Pole powierzchni koła - wielokąt foremny

Można zauważyć, że obwód n-kąta foremnego opisanego na kole wynosi

$$O_n=na$$

a jego pole to suma pól trójkątów o podstawie $a$ i wysokości równej promieniowi koła $r$.

$$P_n=n\frac{ar}{2}=\frac{nar}{2}$$

Podstawiając

$$P_n=\frac{O_nr}{2}$$

Gdy n jest coraz większe, $P_n$ coraz dokładniej przybliża pole koła, a $O_n$ jego obwód. W „kroku granicznym” (zagadnienie wielkości nieskończenie małej) otrzymujemy

$O_n\to 2\pi r$ – tu z definicji liczby $\pi$

$$P_n\to\frac{2\pi rr}{2}=\pi r^2$$

Pole powierzchni koła – dowód nieco bardziej formalny

Dowód, który przeprowadzę, nie będzie oparty na całkowaniu równania okręgu. Wykorzystam ciągi i ich granice oraz twierdzenie o trzech ciągach.

Twierdzenie o trzech ciągach

Niech będą dane trzy ciągi rzeczywiste $a_n$, $b_n$ i $c_n$. Jeśli „prawie wszędzie” (tzn. pomijając co najwyżej skończenie wiele wyrazów) zachodzi zależność

$$a_n\leq b_n\leq c_n$$

oraz

$$\lim a_n = \lim c_n = g$$

to

$$\lim b_n = g$$

Twierdzenie o trzech ciągach – strona na Wikipedii.

Przyda się również $\lim_{x\to 0}\frac{\sin x}{x} = 1$

Pamiętam jak w szkole średniej, na lekcjach fizyki, mój nauczyciel wielokrotnie przyjmował, że dla małych $x$ funkcję $\sin x$ dobrze przybliża właśnie $x$. Wynika to z rozwinięcia $\sin x$ w szereg Taylora – wyjaśnienie pomijam. Wyznaczę jednak samą granicę – bo się przyda 🙂

$$\lim_{x\to 0}\frac{\sin x}{x}=\big(\frac{0}{0}\big)\text{ reg. de l`Hospitala}=$$

$$=\lim_{x\to 0}\frac{(\sin x)\prime}{x\prime}=\lim_{x\to 0}\frac{\cos x}{1}=$$

$$=\frac{\cos 0}{1}=\frac{1}{1}=1$$

$$\lim_{x\to 0}\frac{\sin x}{x} = 1$$

Reguła de l’Hospitala – Wikipedia

Pole powierzchni koła – dowód

Rozważmy n-kąty foremne opisane na kole i wpisane w koło. Pole n-kąta opisanego nazwijmy „polem zewnętrznym” i oznaczmy $Z_n$. Analogicznie pole n-kąta wpisanego nazwiemy „polem wewnętrznym” oznaczając je $W_n$.

Pole powierzchni koła - wielokąt foremny wpisany i opisany

Oczywiście

$$W_n\leq P\leq Z_n$$

gdzie $P$ oznacza pole koła.

W kolejnym kroku dzielimy n-kąty na n-trójkątów. Zauważmy, że w ten sposób kąt pełny został również podzielony na n równych części. Pole „trójkąta zewnętrznego” oznaczymy przez $T_n$, a trójkąta wewnętrznego $t_n$.

Pole powierzchni koła - awielokąt foremny wpisany i opisany

$$Z_n=nT_n$$

$$W_n=nt_n$$

Wyznaczamy pole trójkąta „zewnętrznego”

$$T_n=Ar$$

ale

$$\frac{A}{r}=\text{tg}\beta=\frac{\sin\beta}{\cos\beta}$$

$$\frac{A}{r}r^2=r^2\frac{\sin\beta}{\cos\beta}$$

$$Ar=r^2\frac{\sin\beta}{\cos\beta}$$

$$T_n=r^2\frac{\sin\beta}{\cos\beta}=r^2\frac{\sin\frac{\pi}{n}}{\cos\frac{\pi}{n}}$$

Wyznaczamy pole trójkąta „wewnętrznego”

$$t_n=ah$$

ale

$$\frac{a}{r}=\sin\beta$$

$$a=r\sin\beta$$

oraz

$$\frac{h}{r}=\cos\beta$$

$$h=r\cos\beta$$

podstawiając

$$t_n=r\sin\beta\cdot r\cos\beta=r^2\sin\beta\cos\beta$$

stosując tożsamości trygonometryczne

$$t_n=r^2\sin\beta\cos\beta=\frac{r^2}{2}2\sin\beta\cos\beta=$$

$$=\frac{r^2}{2}\sin2\beta=\frac{r^2}{2}\sin\alpha$$

$$t_n=\frac{r^2}{2}\sin\alpha=\frac{r^2}{2}\sin\frac{2\pi}{n}$$

Finalne ciągi

$$Z_n=nT_n=nr^2\frac{\sin\frac{\pi}{n}}{\cos\frac{\pi}{n}}$$

$$W_n=nt_n=\frac{nr^2}{2}\sin\frac{2\pi}{n}$$

Granice ciągów

$$\lim Z_n=\lim nr^2\frac{\sin\frac{\pi}{n}}{\cos\frac{\pi}{n}}=$$

$$=\lim \frac{nr^2}{\cos\frac{\pi}{n}}\cdot\frac{\pi}{n}\cdot\frac{\sin\frac{\pi}{n}}{\frac{\pi}{n}}=$$

$$=\lim \frac{\pi r^2}{\cos\frac{\pi}{n}}\cdot\frac{\sin\frac{\pi}{n}}{\frac{\pi}{n}}=\frac{\pi r^2}{\cos 0}\cdot 1=$$

$$=\frac{\pi r^2}{1}=\pi r^2$$

$$\lim Z_n=\pi r^2$$

$$\lim W_n=\lim\frac{nr^2}{2}\sin\frac{2\pi}{n}=$$

$$\lim \frac{nr^2}{2}\cdot \frac{2\pi}{n}\cdot\frac{\sin\frac{2\pi}{n}}{\frac{2\pi}{n}}=$$

$$\lim \pi r^2\cdot\frac{\sin\frac{2\pi}{n}}{\frac{2\pi}{n}}=\pi r^2\cdot 1=\pi r^2$$

$$\lim W_n=\pi r^2$$

Wniosek

Z twierdzenia o trzech ciągach wnioskujemy, że pole koła to

$$P=\lim W_n=\lim Z_n=\pi r^2$$

Tempo zbieżności ciągów $W_n$ oraz $Z_n$

Pole powierzchni koła - tempo zbieżności ciągów

🙂

Pozdrowienia,

Mariusz Gromada

Dlaczego pole powierzchni trójkąta wynosi ½·a·h?

Jestem pewien, że wzór na pole powierzchni trójkąta, tj. $$P=\frac{1}{2}ah$$, jest znany niemal wszystkim 🙂  Dzieci, będąc we wczesnym wieku szkolnym, poznają podstawy geometrii, w tym długości obwodów i pola powierzchni figur płaskich. Jeśli interesuje cię dlaczego pole powierzchni trójkąta zależy od długości jego podstawy i wysokości na nią opadającej, to jest to wpis dla Ciebie 🙂 Jednocześnie wzbogacam cykl „Dlaczego?”. Zaczynamy!

Pole powierzchni trójkąta – wzór

Trójkąt - Pole powierzchni

Wzór na pole powierzchni trójkąta, choć prosty, to na pierwszy rzut oka nie jest zbyt intuicyjny (no może poza przypadkiem trójkąta prostokątnego). Oto, w jakiś magiczny sposób, dla każdej podstawy, iloczyny ich długości i długości wysokości na nie opadających, są sobie równe – i więcej – określą pole powierzchni ograniczonej trójkątem 🙂

$$P=\frac{ah_a}{2}=\frac{bh_b}{2}=\frac{ch_c}{2}$$

Pole powierzchni trójkąta – dowód przez animację 🙂 – przypadek 1

Przypadek 1: kiedy wysokość trójkąta „opada” na jego podstawę.

 

Trójkąt - pole powierzchni - przypadek 1

Pole powierzchni trójkąta – dowód przez animację 🙂 – przypadek 2

Przypadek 2: kiedy wysokość trójkąta „opada” poza jego podstawą.

Trójkąt - pole powierzchni - przypadek 2

Pole powierzchni trójkąta – dowód nieco bardziej formalny

Trójkąt prostokątny: przypadek oczywisty, nie wymaga wyprowadzenia 🙂

Trójkąt - Pole powierzchni - Trójkąt prostokątny

$$P=\frac{ab}{2}$$

Przypadek 1: kiedy wysokość trójkąta „opada” na jego podstawę.

Trójkąt - Pole powierzchni - przypadek 1

Wyprowadzenie wzoru:

$$P=P_1+P_2$$

$$2P_1+2P_2=ah$$

$$P_1+P_2=\frac{ah}{2}$$

$$P=\frac{ah}{2}$$

Przypadek 2: kiedy wysokość trójkąta „opada” poza jego podstawą.

Trójkąt - Pole powierzchni - przypadek 2

Wyprowadzenie wzoru:

$$P+P_1=P_2$$

$$P=P_2-P_1$$

$$P_1=\frac{xh}{2}$$

$$P_2=\frac{(a+x)h}{2}=\frac{ah}{2}+\frac{xh}{2}$$

$$P=P_2-P_1=\frac{ah}{2}+\frac{xh}{2}-\frac{xh}{2}=\frac{ah}{2}$$

$$P=\frac{ah}{2}$$

Koniec na dziś 🙂

 

Pozdrowienia,

Mariusz Gromada