Model Teoretycznie Idealny - Porządek - Cut-Off - Brak błędu

Kilka kolejnych części cyklu „Ocena jakości klasyfikacji” skupi się na poradach i pewnych trickach (czyli seria „Tips & Tricks na krzywych”), które zastosowane do krzywych: Lift, Captured Response, ROC, znacząco pogłębiają ich interpretację.

!!! Uwaga: dla uproszczenia – wszędzie tam, gdzie piszę kwantyl, mam na myśli jego rząd !!!

Model teoretycznie idealny a prawdopodobieństwo a-priori

Model teoretycznie idealny to taki model, który daje najlepsze możliwe uporządkowanie – inaczej mówiąc najlepszą możliwą separację klas. Taki model nie myli się przy założeniu, że punkt odcięcia odpowiada prawdopodobieństwu a-priori. Wtedy faktycznie cała klasa pozytywna jest po jednej stronie, a cała klasa negatywna po drugiej stronie punktu cut-off.

Model Teoretycznie Idealny - Porządek - Cut-Off - Brak błędu

Przy każdym innym cut-off model teoretycznie idealny popełnia mniejszy lub większy błąd.

Model Teoretycznie Idealny - Porządek - Cut-Off - Błąd

Ile istnieje różnych modeli teoretycznie idealnych?

Liczba różnych modeli teoretycznie idealnych to funkcja liczności klasy faktycznie pozytywnej i liczności klasy faktycznie negatywnej. Liczba ta będzie iloczynem możliwych permutacji w klasie pozytywnej i możliwych permutacji w klasie negatywnej. Takie modele, z punktu widzenia klasycznej oceny jakości klasyfikacji, są nierozróżnialne (dlatego na wykresach oznaczamy tylko jeden). Sytuacja może się zmienić, jeśli, w celu lepszego uporządkowania, rozważymy dodatkowe cechy (oprócz samej przynależności do badanej klasy), takie jak: wartość klienta, oczekiwany life-time, etc…

Model teoretycznie idealny i maksymalny Lift nieskumulowany

Lift nieskumulowany to stosunek prawdopodobieństwa w przedziale bazy $\Delta q_n$ i prawdopodobieństwa a-priori (w całej bazie).

$$Lift.Nieskum=\frac{p(1|\Delta n)}{p(1)}$$

Jeśli baza jest uszeregowana malejąco względem oceny modelem, maksymalny możliwy lift nieskumulowany będzie funkcją dwuwartościową.

$$Lift.Nieskum(q)=\begin{cases}\frac{1}{apriori}&\text{dla}\quad q\leq apriori\\0&\text{dla}\quad q>apriori\end{cases}$$

$q$ – kwantyl bazy (malejąco względem oceny modelem)

Model Teoretycznie Idealny - Lift Nieskumulowany

Model teoretycznie idealny i maksymalny Lift skumulowany

Również w przypadku skumulowanym, będąc „na lewo od a-priori”, maksymalny możliwy lift skumulowany wynosi $\frac{1}{apriori}$ (cały czas mamy do dyspozycji „1-dynki”). Jeśli „cut-off przekroczy kwantyl a-priori”, klasyfikacja pozytywna zaczyna być „zaśmiecana” frakcją False-Positive, gdyż nie ma już „1-dynek” – co wynika z najlepszego możliwego porządku (model teoretycznie idealny) – tzn. wszystkie obiekty z klasy faktycznie pozytywnej znajdują się w kwantylach z przedziału $[0,apriori$$.

$$Lift.Skum(q)=\begin{cases}\frac{1}{apriori}&\text{dla}\quad q\leq apriori\\\frac{1}{q}&\text{dla}\quad q>apriori\end{cases}$$

$q$ – kwantyl bazy (malejąco względem oceny modelem)

Dlaczego $\frac{1}{q}$? Przyjmijmy $q>apriori$, wtedy

  • $q$ to rozmiar „bazy”
  • $apriori$ to rozmiar klasy faktycznie pozytywnej w rozważanej „bazie”

$$p\big(1\big|~[0,q]~\big)=\frac{apriori}{q}$$

$$Lift.Skum(q)=\frac{p\big(1\big|~[0,q]~\big)}{p(1)}=\frac{apriori}{q\times apriori}=\frac{1}{q}$$

Model Teoretycznie Idealny - Lift Skumulowany

Model teoretycznie idealny i maksymalny Captured Response

Dysponując najlepszym możliwym uporządkowaniem krzywa Captured Response liniowo rośnie dla argumentów „na lewo” od apriori – każdy dodany obiekt, to klasa faktycznie pozytywna. W punkcie „apriori” całość targetu jest już pokryta – zatem wartość krzywej to 100%.

$$Capt.Resp(q)=\begin{cases}\frac{q}{apriori}&\text{dla}\quad q\leq apriori\\1&\text{dla}\quad q>apriori\end{cases}$$

$q$ – kwantyl bazy (malejąco względem oceny modelem)

Model Teoretycznie Idealny - Captured Response

Model teoretycznie idealny i ROC

  • Jeśli cut-off jest „na lewo” od a-priori: pokrywamy wyłącznie elementy klasy faktycznie pozytywnej, zatem rośnie wyłącznie TPR, przy zerowym FPR.
  • Dla cut-off odpowiadającego a-priori: pokryto 100% klasy faktycznie pozytywnej (TPR = 100%), jednocześnie nie popełniając żadnego błędu (FPR = 0%).
  • Dla cut-off większego od a-priori: TPR już wcześniej osiągnęło 100%, teraz klasyfikując pozytywnie popełniamy coraz większy błąd – tzn. FPR zaczyna rosnąć.
  • Dla cut-off = 1: pokryliśmy całość klasy faktycznie pozytywnej (TPR=100%), jednak w tym samym kroku wszelkie obiekty faktycznie negatywne zaliczyliśmy do klasy pozytywnej (FPR=100%).

Model Teoretycznie Idealny - ROC

„Przestrzeń na model” – czyli sens budowy modelu

  • Dla dużych a-priori (np. 50-60%) przestrzeń na model (tzn. możliwy do osiągnięcia lift) jest bardzo mała. W takich sytuacjach należy najpierw zadać sobie pytanie co chcemy osiągnąć, czym jest target, czy nie istnieją proste reguły biznesowe odpowiadające naszym potrzebom? Duże a-priori nie jest przypadkiem abstrakcyjnym – szereg pytań dotyczy cech / zdarzeń bardzo częstych w bazach / populacjach, np: czy rodzina ma dziecko?, czy ktoś posiada samochód?, etc..
  • Małe a-priori (np. kilka promili) daje bardzo dużą przestrzeń na model (typowo duży osiągany lift), ale należy pamiętać, że 5 razy 0 daje 0!! Przykładowa kalkulacja:
    • a-priori = 0.5%
    • lift (na którymś niskim centylu) = 10
    • wtedy prawdopodobieństwo targetu na bazie klasyfikowanej pozytywnie = 0.5% * 10 = 5%
    • wtedy w 95% przypadkach mylimy się – owszem możemy pokryć sporą część targetu, ale sami sobie odpowiedzcie czy nieprawidłowy komunikat do 95% grupy ma sens?
  • Pośrednie a-priori (kilka – kilkanaście procent) – sytuacja optymalna 🙂

Pozdrowienia,

Mariusz Gromada

Poza Liczbami: Inne Twórcze Przestrzenie

Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury

Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury, które wykorzystują matematyczne wzory i proporcje do tworzenia estetycznych i emocjonalnych doznań. Z nieśmiałą ekscytacją przedstawiam moją pierwszą poważniejszą kompozycję, w której starałem się uchwycić te połączenia.

I Am Here – RELEARN – Mariusz Gromada (2024)
I Am Here – RELEARN – Mariusz Gromada (2024)
Deep Under – RELEARN – Mariusz Gromada (2024)
Deep Under – RELEARN – Mariusz Gromada (2024)

Scalar – zaawansowana aplikacja mobilna z silnikiem matematycznym mojego autorstwa

Cut-off point

W części 4 cyklu „Ocena jakości klasyfikacji” przedstawiłem podstawowe statystyki prawdopodobieństwa oraz liftu (w wersji nieskumulowanej) służące do inspekcji modelu predykcyjnego w zakresie siły separacji klas. W części 3 skupiłem się na koncepcji punktu odcięcia (cut-off point), który model predykcyjny (z ciągłą zmienną odpowiedzi) transformuje w klasyfikator. Dziś przybliżę strategie doboru punktu odcięcia, celowo pomijając aspekty techniczne związane z analityką predykcyjną – tym zajmiemy się w kolejnym odcinku (opisując skumulowane prawdopodobieństwo, skumulowany lift, krzywą zysku aka Gain Curve lub Captured Response oraz krzywą ROC).

Dobór punktu odcięcia – strategie (z którymi miałem do czynienia w pracy zawodowej)

  • Całkowicie biznesowa – metoda najprostsza, nadal popularna, jednak coraz rzadziej stosowana.
  • Wyłącznie analityczna – rzadko stosowane w biznesie, częściej widoczna pracach / badaniach naukowych.
  • Hybryda powyższych – wariant dziś preferowany przez różne jednostki CRM.

Dobór całkowicie biznesowy

Nadal częsta praktyka, która przy wnikliwej analizie okazuje się nie być najbardziej optymalną. W strategii „całkowicie biznesowej” dobór punktu odcięcia jest pochodną zasobów (np. dostępność / pojemność kanałów komunikacji). Przykładowo – współpracujemy z call center, które miesięcznie może zadzwonić do 100 tys. Klientów. W takiej sytuacji dosyć naturalnie powstaje potrzeba wybrania „100 tys. najlepszych Klientów” (najlepszych do danej akcji). Model predykcyjny posłuży więc do „posortowania” Klientów, a punkt odcięcia będzie zależny od wskazanej oczekiwanej liczby 100 tys. Problem ze strategią całkowicie biznesową polega na tym, że „najlepszy” mylony jest z „dobry”. Dodatkowo zdarza się, że siła modelu jest błędnie interpretowana jako zdolność do znalezienie większej liczby „dobrych” klientów – w rzeczywistości jest na odwrót – im lepszy model, tym mniejsze optymalne bazy. Równie istotna kwestia to skąd się właściwie wzięła liczba 100 tys?

Dobór wyłącznie analityczny

Dobór wyłącznie analityczny polega na optymalizacji błędów klasyfikacji – w nieco bardziej zgeneralizowanym podejściu optymalizuje się funkcję kosztu błędów (najczęściej jeśli koszty są mocno asymetryczne). Podejście analityczne jest zupełnie poprawna i uzasadnione, jednak w biznesie prawie nieobecne ze względu na brak uwzględnionego aspektu celu biznesowego, priorytetów, zasobów, itp.

Dobór analityczno-biznesowy

Dobór analityczno-biznesowy (jako połączenie powyższych strategii) najlepiej sprawdza się w sytuacji analizy szerszego portfela produktów (tzn. bazy i cut-off’y dobierane do różnych działań stanowią element realizacji szerszej polityki CRM). Zaczynamy od celów biznesowych, priorytetów, analizy zasobów, pojemności kanałów. Następnie weryfikujemy Klientów, ich potrzeby w kontekście możliwie wielu produktów. Ostatecznie – w wyniku kilku iteracji – dążymy do „zmapowania” segmentów Klientów na cele i zasoby, zawsze koniecznie modyfikując obie strony równania. Jest to trudne i wielowymiarowe zadanie, zadanie zawsze „niedokończone”, coraz bardziej opierające się na różnego rodzaju eksperymentach … ale o tym w kolejnych częściach cyklu …

Pozdrowienia,

Mariusz Gromada

Poza Liczbami: Inne Twórcze Przestrzenie

Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury

Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury, które wykorzystują matematyczne wzory i proporcje do tworzenia estetycznych i emocjonalnych doznań. Z nieśmiałą ekscytacją przedstawiam moją pierwszą poważniejszą kompozycję, w której starałem się uchwycić te połączenia.

I Am Here – RELEARN – Mariusz Gromada (2024)
I Am Here – RELEARN – Mariusz Gromada (2024)
Deep Under – RELEARN – Mariusz Gromada (2024)
Deep Under – RELEARN – Mariusz Gromada (2024)

Scalar – zaawansowana aplikacja mobilna z silnikiem matematycznym mojego autorstwa

W poprzednich częściach omówiliśmy sposób tworzenia macierzy błędu oraz podstawowe miary oceny jakości klasyfikacji: czułość (TPR), specyficzność (TNR), precyzję przewidywania pozytywnego (PPV), precyzję przewidywania negatywnego (NPV). Opisane miary określone są dla klasyfikatora binarnego (klasyfikacja pozytywna bądź negatywna), jednak w praktyce najczęściej stosuje się modele predykcyjne z ciągłą zmienną odpowiedzi (np. estymator prawdopodobieństwa skorzystania z produktu, gdzie wynikiem działania modelu jest wartość z przedziału [0, 1] interpretowana właśnie jako wspomniane prawdopodobieństwo określane również skłonnością).

Model predykcyjny

Dla lepszego zrozumienia załóżmy, że analizujemy bazę $n$-klientów oznaczonych odpowiednio $x_1, x_2, \ldots, x_n$. Model predykcyjny to np. funkcja (estymator) zwracająca dla każdego klienta właściwe dla niego prawdopodobieństwo zakupienia produktu – oznaczmy więc fakt zakupienia produktu klasą pozytywną „1”. Teraz możemy podać bardziej formalne określenie – zatem model predykcyjny to estymator prawdopodobieństwa warunkowego $p(1|x_i)$, że wystąpi zakup produktu (klasa „1”), pod warunkiem, że zaobserwujemy cechy klienta $x_i$.

$$p(1| \cdot ) : \{x_1, x_2, \ldots, x_n\} \to [0;1]$$

$$x_i\mapsto p(1| x_i ) \in [0;1]$$

Obserwacja cech klienta, a nie samego klienta, jest tu niezwykle istotna. Mianowicie danego klienta mamy dokładnie jednego, natomiast klientów o tych samych / podobnych cechach (np. miejsce zamieszkania, wiek, itp.) możemy posiadać wielu, co dalej umożliwia wnioskowanie indukcyjne, a w wyniku otrzymanie upragnionego modelu 🙂 .

Segment wysokiej skłonności

Typowo mniejszość klientów charakteryzuje się „wysoką” skłonnością, natomiast „średnia” i „niska” skłonność jest przypisywana do znacznie większej części bazy. Łatwo to uzasadnić – zazwyczaj w określonym okresie czasu produkt kupuje maksymalnie kilka procent bazy klientów. Jeśli model predykcyjny posiada faktyczną wartość predykcyjną, wysokie prawdopodobieństwo przypisze do relatywnie niewielkiej części klientów. Idąc dalej – im lepszy model, tym segment o wysokiej skłonności jest mniejszy i bliższy rozmiarem do oszacowania pochodzącego ze średniej sprzedaży mierzonej dla całej analizowanej bazy klientów (tzw. oszacowanie a-priori).

Model predykcyjny i punkt odcięcia

Punkt odcięcia (cut-off point)

Zadaniem punktu odcięcia jest stworzenie na bazie ciągłej zmiennej odpowiedzi (np. szacowanego prawdopodobieństwa) segmentów (klas) – dla uproszczenia załóżmy, że dwóch (jeden punkt odcięcia). Oznaczmy przez $p_0 \in [0;1]$ punkt rozgraniczający segment wysokiej skłonności od segmentów średniej i niskiej skłonności. Jeśli szacowane prawdopodobieństwo $p(1|x_i) \geq p_0$ klientowi $x_i$ przypiszemy klasę pozytywną „1”, w przeciwnym wypadku klientowi przypisujemy klasę negatywną „0”.

W powyższy sposób z „ciągłego” modelu predykcyjnego otrzymaliśmy klasyfikator binarny – co, w zestawieniu z faktycznymi zdarzeniami zakupu, umożliwia utworzenie macierzy błędu i wyznaczenie wszystkich istotnych miar oceny jakości dokonanej klasyfikacji.

Ale jak dobrać punkt odcięcia? O tym w następnej części 🙂

Pozdrowienia,

Mariusz Gromada

Poza Liczbami: Inne Twórcze Przestrzenie

Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury

Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury, które wykorzystują matematyczne wzory i proporcje do tworzenia estetycznych i emocjonalnych doznań. Z nieśmiałą ekscytacją przedstawiam moją pierwszą poważniejszą kompozycję, w której starałem się uchwycić te połączenia.

I Am Here – RELEARN – Mariusz Gromada (2024)
I Am Here – RELEARN – Mariusz Gromada (2024)
Deep Under – RELEARN – Mariusz Gromada (2024)
Deep Under – RELEARN – Mariusz Gromada (2024)

Scalar – zaawansowana aplikacja mobilna z silnikiem matematycznym mojego autorstwa