TPR i FNR na bazie Liftu Skumulowanego - czyli ocena jakości klasyfikacji (część 18)

Część #18 cyklu "Ocena jakości klasyfikacji" to pogłębienie interpretacji krzywej Liftu Skumulowanego - mam wrażenie, że to już ostatni wpis z serii "Tips & Tricks na krzywych".

TPR (Captured Response) i FNR na bazie Liftu Skumulowanego

Dla modelu idealnego krzywa liftu skumulowanego przyjmuje następującą postać:

Lift.Skum(q)=\begin{cases}\frac{1}{apriori}&\text{dla}\quad q\leq apriori\\\frac{1}{q}&\text{dla}\quad q>apriori\end{cases}

q - kwantyl (rząd) bazy (malejąco względem oceny modelem)

Stosując technikę "przedłużania modelu idealnego", analogicznie do zastosowanej w części #17 "PPV i FDR na bazie TPR", tworzymy "skalę" umożliwiającą wyznaczenie TPR (True-Positive Rate) oraz FNR (False-Negative Rate).

TPR i FNR na bazie Liftu Skumulowanego

Zależności

TPR(q)=q\times Lift.Skum(q)=\frac{A}{B}

A=Lift.Skum(q)

B=\frac{1}{q}

Dowód: w części #11 "Captured Response vs Lift" pokazałem, że

\frac{CR(q)}{q}=Lift.Skum(q)

ale CR(q) to to samo co TPR(q) - różni się tylko nazwą 🙂

Nieco inny dowód podałem również w części #17 "PPV i FDR na bazie TPR"

PPV(q)=\frac{apriori\times TPR(q)}{q}

trochę przekształcając otrzymujemy

\frac{PPV(q)}{apriori}\times q=TPR(q)

Dalej wystarczy zauważyć, że

\frac{PPV(q)}{apriori}=Lift.Skum(q)

cbdo. 🙂

I ponownie - wydaje mi się, że analogicznie można naszkicować TNR oraz FPR - tylko tu analizując: klasyfikację do klasy negatywnej, krzywą Liftu Skumulowanego dla klasy "0" oraz "przedłużenie" modelu idealnego dla klasy "0" - wymaga sprawdzenia 🙂

Pozdrowienia,

Mariusz Gromada