Dwie klasy, ale jeden wskaźnik Giniego – czyli ocena jakości klasyfikacji (część 15)

Wskaźnik Giniego dla klasy pozytywnej + Wskaźnik Giniego dla klasy negatywnej 0

Dziś zadałem sobie pytanie: jak mają się do siebie wskaźniki Giniego, gdyby je osobno zdefiniować dla klasy pozytywnej „tzn. klasy 1” oraz klasy negatywnej „tzn. klasy 0”? Odpowiedź uzyskałem, czego efektem jest 15 część cyklu „Ocena jakości klasyfikacji”. Tytuł wpisu nawiązuje do faktu, że separację dwóch klas uzyskujemy jednym (i tym) samym modelem 🙂 co poniekąd sugeruje, że … 🙂

… wskaźniki Giniego dla klasy pozytywnej i klasy negatywnej są sobie równe!

Wskaźnik Giniego dla klasy pozytywnej + Wskaźnik Giniego dla klasy negatywnej 0

$$Gini_1=\frac{G_1}{G_1+P_1}$$

$$Gini_0=\frac{G_0}{G_0+P_0}$$

$$Gini_1=Gini_0$$

Dowód:

Wykorzystując wzór na pole trójkąta zapisujemy:

$$Gini_1=\frac{G_1}{\quad\frac{1-apriori}{2}\quad}=\frac{2G_1}{1-apriori}$$

$$Gini_0=\frac{G_0}{\quad\frac{apriori}{2}\quad}=\frac{2G_0}{apriori}$$

Zauważamy, że pole $G_0$ można wyznaczyć na bazie różnicy pomiędzy polem trójkąta i polem powierzchni pod krzywą $CR_0$:

$$G_0=\frac{1}{2}-\displaystyle\int_0^1 CR_0(q)dq$$

Korzystając z zależności pomiędzy $CR_1$ oraz $CR_0$ wyprowadzonej w części 14 „Captured Response dla klasy negatywnej” przekształcamy

$$G_0=\frac{1}{2}-\displaystyle\int_0^1\bigg(\frac{q-apriori\times CR_1(q)}{1-apriori}\bigg)dq=$$

$$=\frac{1}{2}-\frac{1}{1-apriori}\displaystyle\int_0^1\bigg(q-apriori\times CR_1(q)\bigg)dq=$$

$$=\frac{1}{2}-\frac{1}{1-apriori}\Bigg(\displaystyle\int_0^1 qdq-apriori\displaystyle\int_0^1 CR_1(q)dq\Bigg)=$$

$$=\frac{1}{2}-\frac{1}{1-apriori}\Bigg[\frac{q^2}{2}\bigg|_0^1-apriori\bigg(G_1+\frac{1}{2}\bigg)\Bigg]=$$

$$=\frac{1}{2}-\frac{1}{1-apriori}\bigg(\frac{1}{2}-apriori\times G_1-\frac{apriori}{2}\bigg)$$

$$=\frac{1}{2}-\frac{1}{2(1-apriori)}+\frac{apriori\times G_1}{1-apriori}+\frac{apriori}{2(1-apriori)}=$$

$$=\frac{1-apriori}{2(1-apriori)}-\frac{1}{2(1-apriori)}+$$

$$+\frac{apriori\times 2G_1}{2(1-apriori)}+\frac{apriori}{2(1-apriori)}=$$

$$=\frac{1-apriori-1+apriori\times 2G_1+apriori}{2(1-apriori)}=$$

$$=\frac{apriori\times 2G_1}{2(1-apriori)}=$$

$$=\frac{apriori}{2}\times\frac{2G_1}{1-apriori}=$$

$$=\frac{apriori}{2}\times Gini_1$$

$$G_0=\frac{apriori}{2}\times Gini_1$$

Ale

$$Gini_0=\frac{2G_0}{apriori}=$$

$$=\frac{2}{apriori}\times G_0=\frac{2}{apriori}\times\frac{apriori}{2}\times Gini_1$$

$$Gini_0=Gini_1$$

cbdo 🙂

Pozdrowienia,

Mariusz Gromada

Poza Liczbami: Inne Twórcze Przestrzenie

Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury

Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury, które wykorzystują matematyczne wzory i proporcje do tworzenia estetycznych i emocjonalnych doznań. Z nieśmiałą ekscytacją przedstawiam moją pierwszą poważniejszą kompozycję, w której starałem się uchwycić te połączenia.

I Am Here – RELEARN – Mariusz Gromada (2024)
I Am Here – RELEARN – Mariusz Gromada (2024)
Deep Under – RELEARN – Mariusz Gromada (2024)
Deep Under – RELEARN – Mariusz Gromada (2024)

Scalar – zaawansowana aplikacja mobilna z silnikiem matematycznym mojego autorstwa

Views All Time
Views All Time
2019
Views Today
Views Today
1

Dodaj komentarz

Twój adres e-mail nie zostanie opublikowany. Wymagane pola są oznaczone *