Customer Intelligence, Data Mining, Matematyka, Statystyka matematyczna

Wskaźnik Giniego na bazie wartości oczekiwanej – czyli ocena jakości klasyfikacji (część 19)

W trakcie minionej nocy, około godziny 02:00, miałem nagły przebłysk 🙂 Jakoś tak, nie wiem dlaczego, przypomniałem sobie pewną zależność dla wartości oczekiwanej zmiennej losowej o wartościach nieujemnych. Zdałem sobie sprawę, że na tej podstawie, jestem w stanie opracować twierdzenie dotyczące wskaźnika Giniego (dla modelu predykcyjnego), dające elegancką postać oraz łatwe narzędzie jego estymacji. Wzór,… Read More Wskaźnik Giniego na bazie wartości oczekiwanej – czyli ocena jakości klasyfikacji (część 19)

Customer Intelligence, Data Mining, Matematyka, Statystyka matematyczna

Dwie klasy, ale jeden wskaźnik Giniego – czyli ocena jakości klasyfikacji (część 15)

Dziś zadałem sobie pytanie: jak mają się do siebie wskaźniki Giniego, gdyby je osobno zdefiniować dla klasy pozytywnej „tzn. klasy 1” oraz klasy negatywnej „tzn. klasy 0”? Odpowiedź uzyskałem, czego efektem jest 15 część cyklu „Ocena jakości klasyfikacji”. Tytuł wpisu nawiązuje do faktu, że separację dwóch klas uzyskujemy jednym (i tym) samym modelem 🙂 co poniekąd sugeruje,… Read More Dwie klasy, ale jeden wskaźnik Giniego – czyli ocena jakości klasyfikacji (część 15)

Customer Intelligence, Data Mining, Matematyka, Statystyka matematyczna

Wskaźnik Giniego na bazie Captured Response – czyli ocena jakości klasyfikacji (część 12)

Wskaźnik Giniego, który opisałem w części #7 poświęconej krzywej ROC, jest jednym z najważniejszych narzędzi wykorzystywanych w procesie oceny jakości klasyfikacji. Choć krzywa ROC jest ważna i bardzo przydatna, to z mojego doświadczenia wynika, że większość analityków woli wykreślać krzywą Captured Response. Sądzę, że wszyscy intuicyjnie czujemy, że „Gini z ROC” i „Gini z Captured Response”… Read More Wskaźnik Giniego na bazie Captured Response – czyli ocena jakości klasyfikacji (część 12)

Customer Intelligence, Data Mining, Matematyka, Statystyka matematyczna

Receiver Operating Characteristic – Krzywa ROC – czyli ocena jakości klasyfikacji (część 7)

Receiver Operating Characteristic – Krzywa ROC – geneza nazwy Termin „Krzywa ROC” wywodzi się z teorii detekcji sygnałów, której zadaniem jest odróżnienie sygnału będącego informacją (np. sygnały z maszyn / urządzeń elektronicznych, bodźce pochodzące z organizmów żywych) od wzorców przypadkowych nie zawierających informacji (szum, tło, aktywność losowa). Pierwsze wykorzystanie krzywej ROC datuję się na okres II Wojny… Read More Receiver Operating Characteristic – Krzywa ROC – czyli ocena jakości klasyfikacji (część 7)