Captured Response = ROC x apriori – czyli ocena jakości klasyfikacji (część 8)

Captured Response vs ROC

W części #6 oraz części #7 cyklu „Ocena jakości klasyfikacji” przedstawiłem krzywą zysku (aka: Gain, Captured Response) oraz krzywą ROC. Dzisiaj skupię się na mało znanej, acz bardzo prostej i przydatnej, relacji pomiędzy tymi krzywymi – okazuje się bowiem, że wykresy są „niemal identyczne” 🙂

Captured Response vs ROC

Wzór łączący ROC z Captured Response

$$X_{cr}=Y_{roc}\times apriori+X_{roc}\times \Big(1-apriori\Big)$$

$$Y_{cr}=Y_{roc}$$

Geometryczne podobieństwo Captured Response i ROC

Odpowiednio spoglądając na umieszczone obok siebie wykresy ciężko odeprzeć wrażenie, że krzywe są bardzo podobne. Intuicja podpowiada, że mamy tu do czynienia z tymi samymi funkcjami, jedynie naszkicowanymi w nieco różnych układach współrzędnych.

Captured Response vs ROC

W obu przypadkach to „przestrzeń” pomiędzy modelem losowym i modelem idealnym definiuje odpowiedni układ współrzędnych, a różnica obecna w Captured Response powiązana jest z a-priori (CR jest zależna od a-priori, ROC nie zależy od a-priori). Idąc za kolejnym przeczuciem powiemy, że najprawdopodobniej dla tej samej wartości „Y” różnić się będą wartości „X” (ze względu na „ściśniecie” obecne w Captured Response).

Wzór na bazie macierzy przekształcenia liniowego – jedynie poglądowo

Uwaga: poniższe wyprowadzenie jest jedynie pomocnicze, nie stanowi wystarczającej argumentacji uzasadniającej „identyczność” krzywych Captured Response i ROC!!! Formalna argumentacja znajduje się w kolejnej sekcji.

ROC w CR - przekształcenie liniowe - wektory

Zauważmy, że wektor

$\begin{bmatrix}X_{ROC}=0\\Y_{ROC}=1\end{bmatrix}$ przechodzi w $\begin{bmatrix}X_{CR}=apriori\\Y_{CR}=1\end{bmatrix}$

oraz wektor

$\begin{bmatrix}X_{ROC}=1\\Y_{ROC}=1\end{bmatrix}$ przechodzi w $\begin{bmatrix}X_{CR}=1\\Y_{CR}=1\end{bmatrix}$

Zatem macierz przekształcenia liniowego przyjmuje postać (potrzeba rozwiązać prościutki układ równań):

$$A=\begin{bmatrix}1-apriori & apriori\\0 & 1\end{bmatrix}$$

Finalne przekształcenie ROC w Capture Response to:

$$\begin{bmatrix}1-apriori & apriori\\0 & 1\end{bmatrix}\times\begin{bmatrix}X_{ROC}\\Y_{ROC}\end{bmatrix}=\begin{bmatrix}X_{CR}\\Y_{CR}\end{bmatrix}$$

Wynik bardzo ciekawy – faktycznie wystarczy a-priori 🙂 Jednak to nie jest dowód, wyprowadzenie bazowało na intuicji …

Wzór na bazie proporcji – jedynie poglądowo

Uwaga: Ponownie – poniższe wyprowadzenie jest jedynie pomocnicze, nie stanowi wystarczającej argumentacji uzasadniającej „identyczność” krzywych Captured Response i ROC!!! Formalna argumentacja znajduje się w kolejnej sekcji.

Oznaczmy punkty (wykres powyżej):

$B_{cr}=\Big(X_{cr}, Y_{cr}\Big)$ – punkt na krzywej Captured Response

$B_{roc}=\Big(X_{roc}, Y_{roc}\Big)$ – punkt na krzywej ROC

Podążając za „głosem wewnętrznym” 🙂 napiszemy równość

$$Y_{cr}=Y_{roc}$$

oraz równość proporcji długości odcinków

$${\Large\frac{a_{cr}}{a_{cr}+b_{cr}}=\frac{a_{roc}}{a_{roc}+b_{roc}}}$$

To pozwoli wyprowadzić formułę dla wartość $X_{cr}$ w zależności od współrzędnych $\Big(X_{roc}, Y_{roc}\Big)$.

Długość odcinka: $a_{roc}=X_{roc}$

Długość odcinka: $a_{roc}+b_{roc}=Y_{roc}$ (wynika z pozycji punktu $C_{roc}=C_{cr}$).

Przechodzimy od wyznaczenia współrzędnych punktu $A_{cr}$ leżącego na krzywej idealnej wykresu Capture Response.

Prosta „idealna” jest opisana równaniem: $y={\Large\frac{x}{apriori}}$ dla x mniejszych od a-priori, zatem

$$x=y\times apriori$$

I dalej współrzędne

$$A_{cr}=\Big(Y_{cr}\times apriori, Y_{cr}\Big)=\Big(Y_{roc}\times apriori, Y_{roc}\Big)$$

Zaś współrzędne

$$B_{cr}=\Big(X_{cr}, Y_{cr}\Big)=\Big(X_{cr}, Y_{roc}\Big)$$

$$C_{cr}=\Big(Y_{cr}, Y_{cr}\Big)=\Big(Y_{roc}, Y_{roc}\Big)$$

W tej chwili przystępujemy do wyznaczenia długości odcinków

Długość odcinka: $a_{cr}=X_{cr}-Y_{roc}\times apriori$

Długość odcinka: $a_{cr}+b_{cr}=Y_{roc}-Y_{roc}\times apriori=Y_{roc}\Big(1-apriori\Big)$

Kilka ostatnich kroków

$${\Large\frac{a_{cr}}{a_{cr}+b_{cr}}=\frac{a_{roc}}{a_{roc}+b_{roc}}}$$

$${\Large\frac{X_{cr}-Y_{roc}\times apriori}{Y_{roc}\Big(1-apriori\Big)}=\frac{X_{roc}}{Y_{roc}}}$$

Mnożymy przez $Y_{roc}$

$${\Large\frac{X_{cr}-Y_{roc}\times apriori}{1-aprior}}=X_{roc}$$

$$X_{cr}-Y_{roc}\times apriori=X_{roc}\times \Big(1-apriori\Big)$$

I finalnie

$$X_{cr}=Y_{roc}\times apriori+X_{roc}\times \Big(1-apriori\Big)$$

$$Y_{cr}=Y_{roc}$$

Wynik identyczny – jednak to nadal nie dowód …

Pełny dowód na bazie macierzy błędu i prawdopodobieństw

Oś „Y” w przypadku ROC to True-Positive Rate, czyli

$$TPR={\Large\frac{TP}{TP+FN}}={\Large\frac{TP}{Faktyczne.P}}=P(1|1)$$

Macierz błędu

Z powyższego bezpośrednio wynika, że

$$Y_{cr}=Y_{roc}$$

Współrzędna „X” krzywej Captured Response to kwantyl bazy, tzn. gdyby założyć, że X% bazy klasyfikujemy pozytywnie, to dotrzemy do Y% frakcji targetu – zatem $X_{cr}$ jest rozmiarem frakcji przewidywania pozytywnego. Rozważmy poniższy rozkład oceny modelem.

True-Positive, False-Positive, True-Negative, False-Negative vs ocena modelem

Przewidywanie pozytywne składa się z frakcji TP+FP, ale

$$Klasyf.P=TP+FP=…$$

$$…=TPR\times Faktyczne.P+FPR\times Faktyczne.N$$

$$P(klasyf=P)=…$$

$$…=TPR\times apriori+FPR\times (1-apriori)=…$$

$$…=P(1|1)P(1)+P(1|0)P(0)$$

Finalnie

$$X_{cr}=Y_{roc}\times apriori+X_{roc}\times \Big(1-apriori\Big)$$

$$Y_{cr}=Y_{roc}$$

Co z tego wynika?

  • Rozumiejąc relację pomiędzy krzywą ROC a krzywą Captured Response analiza modelu jest znacznie prostsza, szczególnie jeśli korzystamy z narzędzia, które prezentuje tylko jeden wariant krzywej (często ROC). Przy małych apriori oś „X” krzywej ROC można praktycznie uznać za oś „X” krzywej Captured Response. Przy większych apriori należy intuicyjnie przesuwać „X” w prawo aby z ROC uzyskać Captured Response.
  • Gini policzone na ROC oraz na CR (pamiętając o przestrzeni pomiędzy modelem losowym i modelem idealnym) bedą sobie równe.

Przykład działania wzoru

Captured Response

Captured Response

Captured Response

Captured Response

Captured Response

Captured Response

Captured Response

Captured Response

Captured Response

Captured Response

Captured Response

Pozdrowienia,

Mariusz Gromada

Poza Liczbami: Inne Twórcze Przestrzenie

Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury

Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury, które wykorzystują matematyczne wzory i proporcje do tworzenia estetycznych i emocjonalnych doznań. Z nieśmiałą ekscytacją przedstawiam moją pierwszą poważniejszą kompozycję, w której starałem się uchwycić te połączenia.

I Am Here – RELEARN – Mariusz Gromada (2024)
I Am Here – RELEARN – Mariusz Gromada (2024)
Deep Under – RELEARN – Mariusz Gromada (2024)
Deep Under – RELEARN – Mariusz Gromada (2024)

Scalar – zaawansowana aplikacja mobilna z silnikiem matematycznym mojego autorstwa

Views All Time
Views All Time
3072
Views Today
Views Today
1

Dodaj komentarz

Twój adres e-mail nie zostanie opublikowany. Wymagane pola są oznaczone *