Wskaźnik Giniego, który opisałem w części #7 poświęconej krzywej ROC, jest jednym z najważniejszych narzędzi wykorzystywanych w procesie oceny jakości klasyfikacji. Choć krzywa ROC jest ważna i bardzo przydatna, to z mojego doświadczenia wynika, że większość analityków woli wykreślać krzywą Captured Response. Sądzę, że wszyscy intuicyjnie czujemy, że „Gini z ROC” i „Gini z Captured Response” to to samo 🙂 Ale dlaczego tak jest? 🙂 Dziś odpowiem na to pytanie, jednocześnie wzbogacając serię „Tips & Tricks na krzywych”!
Wyznacznik macierzy przekształcenia liniowego i współczynnik zmiany pola powierzchni
Jeśli analizujemy przekształcenie liniowe
$$Ax$$
gdzie $A$ jest macierzą przekształcenia liniowego, a $x$ wektorem, to wyznacznik
$$\text{det}(A)$$
jest współczynnikiem o jaki zmienia się pole powierzchni / objętość / miara figury / obiektu transformowanego poprzez przekształcenie liniowe $Ax$. Polecam poniższy film.
Wyznacznik macierzy przekształcenia liniowego krzywej ROC w krzywą Captured Response
Z powyższego wynika, że pole powierzchni pomiędzy przestrzenią, w której „osadzona” jest krzywa ROC, a przestrzenią „zawierającą” krzywą Captured Response, powinno się skalować poprzez współczynniki $1-apriori$. Sprawdźmy 🙂
Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury
Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury, które wykorzystują matematyczne wzory i proporcje do tworzenia estetycznych i emocjonalnych doznań. Z nieśmiałą ekscytacją przedstawiam moją pierwszą poważniejszą kompozycję, w której starałem się uchwycić te połączenia.
Scalar – zaawansowana aplikacja mobilna z silnikiem matematycznym mojego autorstwa
!!! Uwaga: dla uproszczenia – wszędzie tam, gdzie piszę kwantyl, mam na myśli jego rząd !!!
Model teoretycznie idealny a prawdopodobieństwo a-priori
Model teoretycznie idealny to taki model, który daje najlepsze możliwe uporządkowanie – inaczej mówiąc najlepszą możliwą separację klas. Taki model nie myli się przy założeniu, że punkt odcięcia odpowiada prawdopodobieństwu a-priori. Wtedy faktycznie cała klasa pozytywna jest po jednej stronie, a cała klasa negatywna po drugiej stronie punktu cut-off.
Przy każdym innym cut-off model teoretycznie idealny popełnia mniejszy lub większy błąd.
Ile istnieje różnych modeli teoretycznie idealnych?
Liczba różnych modeli teoretycznie idealnych to funkcja liczności klasy faktycznie pozytywnej i liczności klasy faktycznie negatywnej. Liczba ta będzie iloczynem możliwych permutacji w klasie pozytywnej i możliwych permutacji w klasie negatywnej. Takie modele, z punktu widzenia klasycznej oceny jakości klasyfikacji, są nierozróżnialne (dlatego na wykresach oznaczamy tylko jeden). Sytuacja może się zmienić, jeśli, w celu lepszego uporządkowania, rozważymy dodatkowe cechy (oprócz samej przynależności do badanej klasy), takie jak: wartość klienta, oczekiwany life-time, etc…
Model teoretycznie idealny i maksymalny Lift nieskumulowany
Lift nieskumulowany to stosunek prawdopodobieństwa w przedziale bazy $\Delta q_n$ i prawdopodobieństwa a-priori (w całej bazie).
$$Lift.Nieskum=\frac{p(1|\Delta n)}{p(1)}$$
Jeśli baza jest uszeregowana malejąco względem oceny modelem, maksymalny możliwy lift nieskumulowany będzie funkcją dwuwartościową.
$q$ – kwantyl bazy (malejąco względem oceny modelem)
Model teoretycznie idealny i maksymalny Lift skumulowany
Również w przypadku skumulowanym, będąc „na lewo od a-priori”, maksymalny możliwy lift skumulowany wynosi $\frac{1}{apriori}$ (cały czas mamy do dyspozycji „1-dynki”). Jeśli „cut-off przekroczy kwantyl a-priori”, klasyfikacja pozytywna zaczyna być „zaśmiecana” frakcją False-Positive, gdyż nie ma już „1-dynek” – co wynika z najlepszego możliwego porządku (model teoretycznie idealny) – tzn. wszystkie obiekty z klasy faktycznie pozytywnej znajdują się w kwantylach z przedziału $[0,apriori$$.
Model teoretycznie idealny i maksymalny Captured Response
Dysponując najlepszym możliwym uporządkowaniem krzywa Captured Response liniowo rośnie dla argumentów „na lewo” od apriori – każdy dodany obiekt, to klasa faktycznie pozytywna. W punkcie „apriori” całość targetu jest już pokryta – zatem wartość krzywej to 100%.
$q$ – kwantyl bazy (malejąco względem oceny modelem)
Model teoretycznie idealny i ROC
Jeśli cut-off jest „na lewo” od a-priori: pokrywamy wyłącznie elementy klasy faktycznie pozytywnej, zatem rośnie wyłącznie TPR, przy zerowym FPR.
Dla cut-off odpowiadającego a-priori: pokryto 100% klasy faktycznie pozytywnej (TPR = 100%), jednocześnie nie popełniając żadnego błędu (FPR = 0%).
Dla cut-off większego od a-priori: TPR już wcześniej osiągnęło 100%, teraz klasyfikując pozytywnie popełniamy coraz większy błąd – tzn. FPR zaczyna rosnąć.
Dla cut-off = 1: pokryliśmy całość klasy faktycznie pozytywnej (TPR=100%), jednak w tym samym kroku wszelkie obiekty faktycznie negatywne zaliczyliśmy do klasy pozytywnej (FPR=100%).
„Przestrzeń na model” – czyli sens budowy modelu
Dla dużych a-priori (np. 50-60%) przestrzeń na model (tzn. możliwy do osiągnięcia lift) jest bardzo mała. W takich sytuacjach należy najpierw zadać sobie pytanie co chcemy osiągnąć, czym jest target, czy nie istnieją proste reguły biznesowe odpowiadające naszym potrzebom? Duże a-priori nie jest przypadkiem abstrakcyjnym – szereg pytań dotyczy cech / zdarzeń bardzo częstych w bazach / populacjach, np: czy rodzina ma dziecko?, czy ktoś posiada samochód?, etc..
Małe a-priori (np. kilka promili) daje bardzo dużą przestrzeń na model (typowo duży osiągany lift), ale należy pamiętać, że 5 razy 0 daje 0!! Przykładowa kalkulacja:
a-priori = 0.5%
lift (na którymś niskim centylu) = 10
wtedy prawdopodobieństwo targetu na bazie klasyfikowanej pozytywnie = 0.5% * 10 = 5%
wtedy w 95% przypadkach mylimy się – owszem możemy pokryć sporą część targetu, ale sami sobie odpowiedzcie czy nieprawidłowy komunikat do 95% grupy ma sens?
Pośrednie a-priori (kilka – kilkanaście procent) – sytuacja optymalna 🙂
Pozdrowienia,
Mariusz Gromada
Poza Liczbami: Inne Twórcze Przestrzenie
Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury
Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury, które wykorzystują matematyczne wzory i proporcje do tworzenia estetycznych i emocjonalnych doznań. Z nieśmiałą ekscytacją przedstawiam moją pierwszą poważniejszą kompozycję, w której starałem się uchwycić te połączenia.
Scalar – zaawansowana aplikacja mobilna z silnikiem matematycznym mojego autorstwa
W części #6 oraz części #7 cyklu „Ocena jakości klasyfikacji” przedstawiłem krzywą zysku (aka: Gain, Captured Response) oraz krzywą ROC. Dzisiaj skupię się na mało znanej, acz bardzo prostej i przydatnej, relacji pomiędzy tymi krzywymi – okazuje się bowiem, że wykresy są „niemal identyczne” 🙂
Odpowiednio spoglądając na umieszczone obok siebie wykresy ciężko odeprzeć wrażenie, że krzywe są bardzo podobne. Intuicja podpowiada, że mamy tu do czynienia z tymi samymi funkcjami, jedynie naszkicowanymi w nieco różnych układach współrzędnych.
W obu przypadkach to „przestrzeń” pomiędzy modelem losowym i modelem idealnym definiuje odpowiedni układ współrzędnych, a różnica obecna w Captured Response powiązana jest z a-priori (CR jest zależna od a-priori, ROC nie zależy od a-priori). Idąc za kolejnym przeczuciem powiemy, że najprawdopodobniej dla tej samej wartości „Y” różnić się będą wartości „X” (ze względu na „ściśniecie” obecne w Captured Response).
Wzór na bazie macierzy przekształcenia liniowego – jedynie poglądowo
Uwaga: poniższe wyprowadzenie jest jedynie pomocnicze, nie stanowi wystarczającej argumentacji uzasadniającej „identyczność” krzywych Captured Response i ROC!!! Formalna argumentacja znajduje się w kolejnej sekcji.
Zauważmy, że wektor
$\begin{bmatrix}X_{ROC}=0\\Y_{ROC}=1\end{bmatrix}$ przechodzi w $\begin{bmatrix}X_{CR}=apriori\\Y_{CR}=1\end{bmatrix}$
oraz wektor
$\begin{bmatrix}X_{ROC}=1\\Y_{ROC}=1\end{bmatrix}$ przechodzi w $\begin{bmatrix}X_{CR}=1\\Y_{CR}=1\end{bmatrix}$
Zatem macierz przekształcenia liniowego przyjmuje postać (potrzeba rozwiązać prościutki układ równań):
Wynik bardzo ciekawy – faktycznie wystarczy a-priori 🙂 Jednak to nie jest dowód, wyprowadzenie bazowało na intuicji …
Wzór na bazie proporcji – jedynie poglądowo
Uwaga: Ponownie – poniższe wyprowadzenie jest jedynie pomocnicze, nie stanowi wystarczającej argumentacji uzasadniającej „identyczność” krzywych Captured Response i ROC!!! Formalna argumentacja znajduje się w kolejnej sekcji.
Oznaczmy punkty (wykres powyżej):
$B_{cr}=\Big(X_{cr}, Y_{cr}\Big)$ – punkt na krzywej Captured Response
$B_{roc}=\Big(X_{roc}, Y_{roc}\Big)$ – punkt na krzywej ROC
Podążając za „głosem wewnętrznym” 🙂 napiszemy równość
Współrzędna „X” krzywej Captured Response to kwantyl bazy, tzn. gdyby założyć, że X% bazy klasyfikujemy pozytywnie, to dotrzemy do Y% frakcji targetu – zatem $X_{cr}$ jest rozmiarem frakcji przewidywania pozytywnego. Rozważmy poniższy rozkład oceny modelem.
Przewidywanie pozytywne składa się z frakcji TP+FP, ale
Rozumiejąc relację pomiędzy krzywą ROC a krzywą Captured Response analiza modelu jest znacznie prostsza, szczególnie jeśli korzystamy z narzędzia, które prezentuje tylko jeden wariant krzywej (często ROC). Przy małych apriori oś „X” krzywej ROC można praktycznie uznać za oś „X” krzywej Captured Response.Przy większych apriori należy intuicyjnie przesuwać „X” w prawo aby z ROC uzyskać Captured Response.
Gini policzone na ROC oraz na CR (pamiętając o przestrzeni pomiędzy modelem losowym i modelem idealnym) bedą sobie równe.
Przykład działania wzoru
Pozdrowienia,
Mariusz Gromada
Poza Liczbami: Inne Twórcze Przestrzenie
Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury
Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury, które wykorzystują matematyczne wzory i proporcje do tworzenia estetycznych i emocjonalnych doznań. Z nieśmiałą ekscytacją przedstawiam moją pierwszą poważniejszą kompozycję, w której starałem się uchwycić te połączenia.
Scalar – zaawansowana aplikacja mobilna z silnikiem matematycznym mojego autorstwa
Receiver Operating Characteristic – Krzywa ROC – geneza nazwy
Termin „Krzywa ROC” wywodzi się z teorii detekcji sygnałów, której zadaniem jest odróżnienie sygnału będącego informacją (np. sygnały z maszyn / urządzeń elektronicznych, bodźce pochodzące z organizmów żywych) od wzorców przypadkowych nie zawierających informacji (szum, tło, aktywność losowa). Pierwsze wykorzystanie krzywej ROC datuję się na okres II Wojny Światowej. Po ataku na Pearl Harbor w 1941, USA zaczęły poszukiwać lepszej metody analizy sygnałów radarowych w celu zwiększenia wykrywalności Japońskich samolotów.
W statystyce matematycznej krzywa ROC jest graficzną reprezentacją efektywności modelu predykcyjnegopoprzez wykreślenie charakterystyki jakościowej klasyfikatorów binarnych powstałych z modelu przy zastosowaniu wielu różnych punktów odcięcia. Mówiąc inaczej – każdy punkt krzywej ROC odpowiada innej macierzy błędu (zobacz tutaj) uzyskanej przez modyfikowanie „cut-off point” (zobacz tu). Im więcej różnych punktów odcięcia zbadamy, tym więcej uzyskamy punktów na krzywej ROC. Finalnie na wykres nanosimy TPR (True-Positive Rate – oś pionowa) oraz FPR (False-Positive Rate – oś pozioma).
Krzywa ROC, będąc funkcją punktu odcięcia, przedstawia zmienność TPR (miary pokrycia / wychwycenia klasy faktycznie pozytywnej) w zależności od FPR (poziomu błędu popełnianego na klasie faktycznie negatywnej). Jak zawsze chodzi o pewien kompromis, tzn. dobierając „cut-off” chcemy maksymalizować TPR „trzymając w ryzach” błąd FPR. Analiza relacji TPR(FPR) jest niezwykle przydatna, ale najpierw przypomnijmy kilka podstawowych definicji.
Klasyfikator teoretycznie idealny reprezentowany jest przez punkt (0,1), natomiast klasyfikatory powstałe z modelu losowego „leżą” na prostej TPR=FPR.
ROC – Punkt równowagi (czułość = specyficzność)
Punkt równowagi leży na przecięciu ROC z prostą TPR = 1-FPR = TNR i reprezentuje „cut-off” point, dla którego klasyfikator osiąga równowagę czułość = specyficzność.
ROC – Współczynnik Giniego
Współczynnik Giniego to pole powierzani pomiędzy krzywą ROC dla badanego modelu oraz krzywą ROC dla modelu losowego w interpretacji procentowej do wartości 1/2 – czyli pola powierzchni dla klasyfikatora teoretycznie idealnego. Współczynnik Giniego jest doskonałą miarą jakości modelu i może być interpretowany jako % „idealności” danego modelu predykcyjnego.
Im większy wskaźnik Giniego tym lepiej
Wartość wskaźnika Giniego nie zależy od apriori (teoretycznie), w praktyce trudniej o silny model jeśli apriori jest duże
Gini = 100% dla modelu teoretycznie idealnego
Gini = 0% dla modelu losowego
Pole powierzani pod krzywą ROC – AUC, AUROC
Tym razem wyznaczamy całość pola powierzchni pod wykresem ROC odnosząc wartość do analogicznego pola dla modelu idealnego – w tym przypadku pola kwadratu o boku 1. Interpretacja AUROC (Area Under the ROC) to prawdopodobieństwo, że badany model predykcyjny oceni wyżej (wartość score) losowy element klasy pozytywnej od losowego elementu klasy negatywnej.
Im większy wskaźnik AUROC tym lepiej
Wartość AUROC nie zależy od apriori (teoretycznie), w praktyce trudniej o silny model jeśli apriori jest duże
AUROC = 100% dla modelu teoretycznie idealnego
AUROC = 50% dla modelu losowego
AUROC = 0% dla modelu idealnego klasy przeciwnej do pozytywnej
Ciąg dalszy nastąpi …
Pozdrowienia,
Mariusz Gromada
Poza Liczbami: Inne Twórcze Przestrzenie
Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury
Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury, które wykorzystują matematyczne wzory i proporcje do tworzenia estetycznych i emocjonalnych doznań. Z nieśmiałą ekscytacją przedstawiam moją pierwszą poważniejszą kompozycję, w której starałem się uchwycić te połączenia.
Scalar – zaawansowana aplikacja mobilna z silnikiem matematycznym mojego autorstwa
Skalar - kalkulator, funkcje, wykresy i skrypty - Made in Poland
Skalar to potężny silnik matematyczny i matematyczny język skryptowy, który zbudowany jest na bazie MathParser.org-mXparser
Kliknij na wideo i zobacz Skalara w akcji 🙂
Scalar Lite – wersja lite
Scalar Pro – wersja profesjonalna
Kontynuując przeglądanie strony, wyrażasz zgodę na używanie przez nas plików cookies. więcej informacji
Aby zapewnić Tobie najwyższy poziom realizacji usługi, opcje ciasteczek na tej stronie są ustawione na "zezwalaj na pliki cookies". Kontynuując przeglądanie strony bez zmiany ustawień lub klikając przycisk "Akceptuję" zgadzasz się na ich wykorzystanie.