Wszystkiego najlepszego w Dniu Liczby $\pi$ 🙂


Pole powierzchni figur płaskich podobnych zmienia się z kwadratem skali podobieństwa – fakt nauczany już w szkole podstawowej. Dziś zadajemy pytanie „dlaczego” tak jest? O ile uzasadnienie dla najprostszych typów figur jest banalne (wynika bezpośrednio ze wzorów na pole), to w przypadku powierzchni ograniczonej dowolną krzywą (no może nie do końca dowolną) potrzeba już nieco więcej gimnastyki. Pokażę kilka podjeść, w tym osobno „pokryciowe”, osobno oparte na całce Riemanna, oraz osobno na bazie przekształcenia liniowego. Na koniec podam bardziej ogólne wnioski co do zmiany pola powierzchni względem znacznie szerszej niż podobieństwo klasy transformacji. Zapraszam 🙂

Standaryzacja zmiennej losowej $X$ to proces jej „normalizacji”, którego wynikiem jest taka zmienna losowa $Z$, że
$$\text{E}Z=0$$
$$\text{Var}(Z)=1$$
Standaryzację łatwo wyobrazić sobie jako działanie, które obywa się w dwóch krokach:
Standaryzacja Z: jeśli X jest taką zmienną losową, że
Prelekcja wygłoszona w dniu 25.04.2017 podczas Konferencji Big Data – Bigger opportunities – zapraszam.

Omówione zagadnienia:
Pozdrowienia,
Mariusz Gromada
Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury, które wykorzystują matematyczne wzory i proporcje do tworzenia estetycznych i emocjonalnych doznań. Z nieśmiałą ekscytacją przedstawiam moją pierwszą poważniejszą kompozycję, w której starałem się uchwycić te połączenia.
Agnostycyzm – bliska mi postawa.

Świetnie to wyjaśnia genialny fizyk – Leonard Susskind.
Inne posty w cyklu „Matematyka w obrazkach”.
Pozdrowienia,
Mariusz Gromada
Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury, które wykorzystują matematyczne wzory i proporcje do tworzenia estetycznych i emocjonalnych doznań. Z nieśmiałą ekscytacją przedstawiam moją pierwszą poważniejszą kompozycję, w której starałem się uchwycić te połączenia.
Prelekcja wygłoszona w dniu 15.10.2015 podczas IV Konferencji Customer Intelligence – zapraszam.

Omówione zagadnienia:
Pozdrowienia,
Mariusz Gromada
Dziś głównym bohaterem cyklu „Matematyka w obrazkach” jest drapieżna funkcja odwrotna 🙂

Pozdrowienia,
Mariusz Gromada
Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury, które wykorzystują matematyczne wzory i proporcje do tworzenia estetycznych i emocjonalnych doznań. Z nieśmiałą ekscytacją przedstawiam moją pierwszą poważniejszą kompozycję, w której starałem się uchwycić te połączenia.
Inverse Transform Sampling to typowy sposób generowania liczb pseudolosowych z zadanego rozkładu, który opiera się na funkcji odwrotnej $F^{-1}$ do dystrybuanty $F$ tego rozkładu. Procedura jest banalna, wystarczy wylosować $Y\sim U(0,1)$ i zwrócić $F^{-1}(Y)$. Niestety nie zawsze łatwe jest wyznaczenie jawnej postaci dystrybuanty, tym bardziej dotyczy to funkcji do niej odwrotnej. Dla przykładu – powszechny rozkład normalny charakteryzuje się funkcją gęstości w postaci „elementarnej”, natomiast jego dystrybuanta (i funkcja do niej odwrotna) wymagają zastosowania funkcji specjalnych – w tym przypadku funkcji błędu Gaussa.
Kiedyś kolega (pozdrowienia Marcin!) pokazał mi nieskomplikowany sposób generacji liczb losowych z rozkładu opisanego histogramem. Zwyczajnie „kładziemy” (skalując) słupki histogramu na odcinek $(0,1)$, losujemy $X\sim U(0,1)$, weryfikujemy „do którego słupka wpadło X”, zwracamy „właśnie ten słupek”. Genialne w swojej prostocie, i działa. Histogram to dyskretna reprezentacja rozkładu, dlatego postanowiłem metodę uogólnić na klasę rozkładów ciągłych opisanych zadaną funkcją gęstości. Otrzymaną metodę nazwałem „MaCDRG-yver” 🙂

Kontynuując przeglądanie strony, wyrażasz zgodę na używanie przez nas plików cookies. więcej informacji
Aby zapewnić Tobie najwyższy poziom realizacji usługi, opcje ciasteczek na tej stronie są ustawione na "zezwalaj na pliki cookies". Kontynuując przeglądanie strony bez zmiany ustawień lub klikając przycisk "Akceptuję" zgadzasz się na ich wykorzystanie.