Customer Intelligence, Data Mining, Matematyka, Statystyka matematyczna

TPR i FNR na bazie Liftu Skumulowanego – czyli ocena jakości klasyfikacji (część 18)

Część #18 cyklu „Ocena jakości klasyfikacji” to pogłębienie interpretacji krzywej Liftu Skumulowanego – mam wrażenie, że to już ostatni wpis z serii „Tips & Tricks na krzywych”. TPR (Captured Response) i FNR na bazie Liftu Skumulowanego Dla modelu idealnego krzywa liftu skumulowanego przyjmuje następującą postać: $$Lift.Skum(q)=\begin{cases}\frac{1}{apriori}&\text{dla}\quad q\leq apriori\\\frac{1}{q}&\text{dla}\quad q>apriori\end{cases}$$ $q$ – kwantyl (rząd) bazy (malejąco… Read More TPR i FNR na bazie Liftu Skumulowanego – czyli ocena jakości klasyfikacji (część 18)

Customer Intelligence, Data Mining, Matematyka, Statystyka matematyczna

Wskaźnik KS na bazie Captured Response / Tips & Tricks na krzywych – czyli ocena jakości klasyfikacji (część 14)

Witaj w 14 części cyklu „Ocena jakości klasyfikacji”. Dziś rozwinę wątek oszacowania separacji klas na bazie krzywej Captured Response – będzie to kolejny odcinek z serii „Tips & Tricks na krzywych”. Statystyka KS Kołmogorowa-Smirnowa jako miara różnicy rozkładów Rozważmy dwie rzeczywiste zmienne losowe $X_1$ i $X_2$ oraz ich dystrybuanty odpowiednio $F_{X_1}$ oraz $F_{X_2}$. Statystyką Kołmogorowa-Smirnowa dla… Read More Wskaźnik KS na bazie Captured Response / Tips & Tricks na krzywych – czyli ocena jakości klasyfikacji (część 14)

Customer Intelligence, Data Mining, Matematyka, Statystyka matematyczna

Lift nieskumulowany jako gęstość, Captured Response jako dystrybuanta – czyli ocena jakości klasyfikacji (część 13)

W 13 części cyklu „Ocena jakości klasyfikacji” przedstawię dodatkowe interpretacje dla krzywej liftu nieskumulowanego i krzywej Captured Response. Obiecuję, że będzie ciekawie 🙂 przecież robimy „deep dive into predictive model assessment curves”. W dzisiejszym odcinku zapomnimy o punktach odcięcia, klasyfikatorach binarnych, rozważając rozkłady populacji jako całość. Chwilkę się do tego przygotowywałem – było warto – seria „Tips… Read More Lift nieskumulowany jako gęstość, Captured Response jako dystrybuanta – czyli ocena jakości klasyfikacji (część 13)

Customer Intelligence, Data Mining, Matematyka, Statystyka matematyczna

Captured Response vs Lift – czyli ocena jakości klasyfikacji (część 11)

W części #8 cyklu „Ocena jakości klasyfikacji” pokazałem, że ROC i Captured Response to te same krzywe, które łączy proste przekształcenie liniowe. W bieżącym odcinku #11, należącym również do serii „Tips & Tricks na krzywych”, przedstawię zależność pomiędzy Captured Response i Lift w wariantach: nieskumulowanym i skumulowanym. !!! Uwaga: dla uproszczenia – wszędzie tam, gdzie… Read More Captured Response vs Lift – czyli ocena jakości klasyfikacji (część 11)

Customer Intelligence, Data Mining, Matematyka, Statystyka matematyczna

Model teoretycznie idealny – czyli ocena jakości klasyfikacji (część 10)

Kilka kolejnych części cyklu „Ocena jakości klasyfikacji” skupi się na poradach i pewnych trickach (czyli seria „Tips & Tricks na krzywych”), które zastosowane do krzywych: Lift, Captured Response, ROC, znacząco pogłębiają ich interpretację. !!! Uwaga: dla uproszczenia – wszędzie tam, gdzie piszę kwantyl, mam na myśli jego rząd !!! Model teoretycznie idealny a prawdopodobieństwo a-priori… Read More Model teoretycznie idealny – czyli ocena jakości klasyfikacji (część 10)

Customer Intelligence, Data Mining, Matematyka, Statystyka matematyczna

Skumulowane miary siły modelu predykcyjnego – czyli ocena jakości klasyfikacji (część 6)

W części 4 cyklu „ocena jakości klasyfikacji” opisałem podstawowe statystyki w wariancie nieskumulowanym służące inspekcji modelu predykcyjnego. Nieskumulowane prawdopodobieństwo i nieskumulowany lift, choć bardzo przydatne na etapie budowy modelu (praca analityka), sprawdzają się nieco gorzej w kontaktach analityk – odbiorca biznesowy. Odbiorcę biznesowego zazwyczaj interesują informacje takie jak „do jakiej części zainteresowanych produktem dotrę?” lub… Read More Skumulowane miary siły modelu predykcyjnego – czyli ocena jakości klasyfikacji (część 6)

Customer Intelligence, Data Mining, Matematyka, Probabilistyka, Statystyka matematyczna

Model predykcyjny i siła separacji klas – czyli ocena jakości klasyfikacji (część 4)

Ze statystyk odwiedzin wynika, że cykl „Ocena jakości klasyfikacji” cieszy się Waszym zainteresowaniem – zatem wracam do tej tematyki. Dziś przedstawię wstęp do analizy jakości modeli predykcyjnych, skupiając się na jednym tylko aspekcie jakości – tzn. na sile modelu w kontekście separacji klas. Zapraszam 🙂 Jakość modelu predykcyjnego Matematyka dostarcza wielu różnych miar służących ocenie siły… Read More Model predykcyjny i siła separacji klas – czyli ocena jakości klasyfikacji (część 4)