Lift nieskumulowany - całka

W 13 części cyklu „Ocena jakości klasyfikacji” przedstawię dodatkowe interpretacje dla krzywej liftu nieskumulowanego i krzywej Captured Response. Obiecuję, że będzie ciekawie 🙂 przecież robimy „deep dive into predictive model assessment curves”. W dzisiejszym odcinku zapomnimy o punktach odcięcia, klasyfikatorach binarnych, rozważając rozkłady populacji jako całość. Chwilkę się do tego przygotowywałem – było warto – seria „Tips & Tricks na krzywych” nabiera rumieńców!

Pole powierzchni pod krzywą liftu nieskumulowanego

Lift nieskumulowany dla modelu losowego to funkcja stała o wartości 1. Pole pod taką krzywą równe jest polu kwadratu o boku 1 i wynosi oczywiście 1. Model losowy „rozrzuca” obserwacje z „klasy 1” równomiernie, tzn. taka sama część otrzymuje wysoki, średni i niski score. Głównym zadaniem modelu predykcyjnego, w pewnym sensie, jest „przepchnąć” obserwacje należące do „klasy 1” z segmentu niskiego score do segmentu wysokiego score – dzięki temu pojawia się separacja klas. Powyższe dobrze obrazuję animacją, gdzie siła modelu utożsamiana jest z „siłą podmuchu wiatru” 🙂

Lift nieskumulowany - całka

Takie „przepchnięcie” nie ma wpływu na ilość „jedynek”, zatem należy podejrzewać, że pole pod krzywą liftu nieskumulowanego zawsze wynosi 1. No to całkujemy:

$$\displaystyle\int_0^1 Lift.Niesk(q)dq$$

Oznaczenia + zależności:

  • $N=N_1+N_0$ – liczba obserwacji: łączna, z „klasy 1”, z „klasy 0”;
  • $k$ – liczba przedziałów, na które dzielimy odcinek $[0;1]$;
  • $p=\frac{1}{k}$ – szerokość pojedynczego przedziału (zakres zmienności rzędu kwantyli);
  • $p\cdot N$ – liczba obserwacji w przedziale (podział po kwantylach, zatem po równo);
  • $i=\{1,2,3,\ldots,k\}$ – numer przedziału;
  • $n_1^i+n_0^i=pN$ – liczba obserwacji w przedziale, osobno „z klasy 1” i „z klasy 0”;
  • $\Delta q^i$ – przedział, na którym wyznaczona jest wartość liftu nieskumulowanego;
  • $\displaystyle\sum_{i=1}^k n_1^i=N_1$
  • $\displaystyle\sum_{i=1}^k n_0^i=N_0$
  • $\displaystyle\sum_{i=1}^k n_1^i+n_0^i=N_1+N_0=N$

Lift nieskumulowany jest funkcją przedziałami stałą:

$$Lift.Niesk(q)=Lift.Niesk(\Delta q^i)\quad\text{dla}\quad q\in\Delta q^i$$

$$Lift.Niesk(\Delta q^i)=\frac{P(1|\Delta q^i)}{P(1)}$$

$$P(1|\Delta q^i)=\frac{n_1^i}{pN}$$ oraz $$P(1)=\frac{N_1}{N}$$

$$Lift.Niesk(\Delta q^i)=\frac{n_1^i}{pN}\cdot \frac{N}{N_1}=\frac{n_1^i}{pN_1}$$

$$Lift.Niesk(\Delta q^i)=\frac{n_1^i}{pN_1}$$

$$\displaystyle\int_0^1 Lift.Niesk(q)dq=\displaystyle\sum_{i=1}^k p\cdot Lift.Niesk(\Delta q^i)$$

$$\displaystyle\sum_{i=1}^k p\cdot Lift.Niesk(\Delta q^i)=\displaystyle\sum_{i=1}^k p\frac{n_1^i}{pN_1}=$$

$$=\displaystyle\sum_{i=1}^k \frac{n_1^i}{N_1}=\frac{\displaystyle\sum_{i=1}^k n_1^i}{N_1}=\frac{N_1}{N_1}=1$$

$$\displaystyle\int_0^1 Lift.Niesk(q)dq=1$$

Lift nieskumulowany jako funkcja gęstości rozkładu prawdopodobieństwa

Funkcja liftu nieskumulowanego jest nieujemna i spełnia warunek „unormowania” (w przeciwieństwie do funkcji nieskumulowanego prawdopodobieństwa) w kontekście gęstości rozkładu prawdopodobieństwa – tzn. pole powierzchni pod krzywą wynosi 1. Taka gęstość opisuje rozkład rzędu kwantyli (kwantyle wyznaczane dla całej populacji „klasa 0 + klasa 1” względem malejącej oceny modelem) w klasie faktycznie pozytywnej – tzn. w „klasie 1”.

Lift nieskumulowany jako gęstość

Jeśli

$$Q=(q_1,q_2)$$

to

$$P(q\in Q|1)=\displaystyle\int_{q_1}^{q_2}Lift.Niesk(q)dq$$

Captured Response jako dystrybuanta rozkładu prawdopodobieństwa

Captured Response jest funkcją niemalejącą, jednostronnie ciągłą (powiedzmy, że prawostronnie), o wartościach z przedziału $[0;1]$, wartości 0 dla $q\leq 0$ oraz wartości 1 dla $q\geq 1$. Tym samym spełnione są warunki bycia dystrybuantą pewnego rozkładu prawdopodobieństwa. W części „#11 – Captured Response vs Lift” wykazałem, że pochodna z Captured Response to lift nieskumulowany. Wniosek: Captured Response i lift nieskumulowany to dystrybuanta i gęstość tego samego rozkładu prawdopodobieństwa.

Lift nieskumulowany jako gęstość, Captured Response jako dystrybuanta

Jeśli

$$Q=(q_1,q_2)$$

to

$$P(q\in Q|1)=\displaystyle\int_{q_1}^{q_2}Lift.Niesk(q)dq=CR(q_2)-CR(q_1)$$

Pozdrowienia,

Mariusz Gromada

Poza Liczbami: Inne Twórcze Przestrzenie

Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury

Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury, które wykorzystują matematyczne wzory i proporcje do tworzenia estetycznych i emocjonalnych doznań. Z nieśmiałą ekscytacją przedstawiam moją pierwszą poważniejszą kompozycję, w której starałem się uchwycić te połączenia.

I Am Here – RELEARN – Mariusz Gromada (2024)
I Am Here – RELEARN – Mariusz Gromada (2024)
Deep Under – RELEARN – Mariusz Gromada (2024)
Deep Under – RELEARN – Mariusz Gromada (2024)

Scalar – zaawansowana aplikacja mobilna z silnikiem matematycznym mojego autorstwa

Koło - pole powierzchni - animacja

$P=\pi r^2$ to chyba najbardziej znany wzór, będący zarazem rzadko rozumianym 🙂 Choć wzór na pole powierzchni koła, bo o nim tu mowa, znany był już w Starożytnej Grecji, to jego uzasadnienie wcale nie jest łatwe. Jest to zatem świetny temat do wzbogacenia cyklu „Dlaczego?” 🙂 Do dzieła! 🙂

Pole powierzchni koła – wzór

Pole powierzchni koła - wzór

$$P=\pi r^2$$

Jak widać powyżej – kwadrat i koło, o tej samej powierzchni, nie są „jakoś intuicyjnie łatwo” powiązane. Więcej – wykazano nawet, że kwadratura koła (procedura wykonywana przy użyciu cyrkla i linijki bez podziałki) jest niewykonalna! I tu pojawia się genialny pomysł z prostokątem 🙂 Nim powiem o co chodzi przyjrzyjmy się co tak naprawdę mówi wzór $$\pi r^2$$.

Pole powierzchni kola - Pi r kwadrat

$\pi\times r^2$ – czyli w kole mieszczą się nieco ponad 3 kwadraty o boku r 🙂

Pole powierzchni koła – dowód przez animację 🙂

Koło - pole powierzchni - animacja

Trochę się napracowałem przy tej animacji 🙂

Pole powierzchni koła – wielokąty foremne

Uwaga – poniższe nie jest dowodem, a obrazuje jedynie sposób wnioskowania stosowany przez Starożytnych Greków (tak np. Archimedes wyznaczał liczbę pi).

Pole powierzchni koła - wielokąt foremny

Można zauważyć, że obwód n-kąta foremnego opisanego na kole wynosi

$$O_n=na$$

a jego pole to suma pól trójkątów o podstawie $a$ i wysokości równej promieniowi koła $r$.

$$P_n=n\frac{ar}{2}=\frac{nar}{2}$$

Podstawiając

$$P_n=\frac{O_nr}{2}$$

Gdy n jest coraz większe, $P_n$ coraz dokładniej przybliża pole koła, a $O_n$ jego obwód. W „kroku granicznym” (zagadnienie wielkości nieskończenie małej) otrzymujemy

$O_n\to 2\pi r$ – tu z definicji liczby $\pi$

$$P_n\to\frac{2\pi rr}{2}=\pi r^2$$

Pole powierzchni koła – dowód nieco bardziej formalny

Dowód, który przeprowadzę, nie będzie oparty na całkowaniu równania okręgu. Wykorzystam ciągi i ich granice oraz twierdzenie o trzech ciągach.

Twierdzenie o trzech ciągach

Niech będą dane trzy ciągi rzeczywiste $a_n$, $b_n$ i $c_n$. Jeśli „prawie wszędzie” (tzn. pomijając co najwyżej skończenie wiele wyrazów) zachodzi zależność

$$a_n\leq b_n\leq c_n$$

oraz

$$\lim a_n = \lim c_n = g$$

to

$$\lim b_n = g$$

Twierdzenie o trzech ciągach – strona na Wikipedii.

Przyda się również $\lim_{x\to 0}\frac{\sin x}{x} = 1$

Pamiętam jak w szkole średniej, na lekcjach fizyki, mój nauczyciel wielokrotnie przyjmował, że dla małych $x$ funkcję $\sin x$ dobrze przybliża właśnie $x$. Wynika to z rozwinięcia $\sin x$ w szereg Taylora – wyjaśnienie pomijam. Wyznaczę jednak samą granicę – bo się przyda 🙂

$$\lim_{x\to 0}\frac{\sin x}{x}=\big(\frac{0}{0}\big)\text{ reg. de l`Hospitala}=$$

$$=\lim_{x\to 0}\frac{(\sin x)\prime}{x\prime}=\lim_{x\to 0}\frac{\cos x}{1}=$$

$$=\frac{\cos 0}{1}=\frac{1}{1}=1$$

$$\lim_{x\to 0}\frac{\sin x}{x} = 1$$

Reguła de l’Hospitala – Wikipedia

Pole powierzchni koła – dowód

Rozważmy n-kąty foremne opisane na kole i wpisane w koło. Pole n-kąta opisanego nazwijmy „polem zewnętrznym” i oznaczmy $Z_n$. Analogicznie pole n-kąta wpisanego nazwiemy „polem wewnętrznym” oznaczając je $W_n$.

Pole powierzchni koła - wielokąt foremny wpisany i opisany

Oczywiście

$$W_n\leq P\leq Z_n$$

gdzie $P$ oznacza pole koła.

W kolejnym kroku dzielimy n-kąty na n-trójkątów. Zauważmy, że w ten sposób kąt pełny został również podzielony na n równych części. Pole „trójkąta zewnętrznego” oznaczymy przez $T_n$, a trójkąta wewnętrznego $t_n$.

Pole powierzchni koła - awielokąt foremny wpisany i opisany

$$Z_n=nT_n$$

$$W_n=nt_n$$

Wyznaczamy pole trójkąta „zewnętrznego”

$$T_n=Ar$$

ale

$$\frac{A}{r}=\text{tg}\beta=\frac{\sin\beta}{\cos\beta}$$

$$\frac{A}{r}r^2=r^2\frac{\sin\beta}{\cos\beta}$$

$$Ar=r^2\frac{\sin\beta}{\cos\beta}$$

$$T_n=r^2\frac{\sin\beta}{\cos\beta}=r^2\frac{\sin\frac{\pi}{n}}{\cos\frac{\pi}{n}}$$

Wyznaczamy pole trójkąta „wewnętrznego”

$$t_n=ah$$

ale

$$\frac{a}{r}=\sin\beta$$

$$a=r\sin\beta$$

oraz

$$\frac{h}{r}=\cos\beta$$

$$h=r\cos\beta$$

podstawiając

$$t_n=r\sin\beta\cdot r\cos\beta=r^2\sin\beta\cos\beta$$

stosując tożsamości trygonometryczne

$$t_n=r^2\sin\beta\cos\beta=\frac{r^2}{2}2\sin\beta\cos\beta=$$

$$=\frac{r^2}{2}\sin2\beta=\frac{r^2}{2}\sin\alpha$$

$$t_n=\frac{r^2}{2}\sin\alpha=\frac{r^2}{2}\sin\frac{2\pi}{n}$$

Finalne ciągi

$$Z_n=nT_n=nr^2\frac{\sin\frac{\pi}{n}}{\cos\frac{\pi}{n}}$$

$$W_n=nt_n=\frac{nr^2}{2}\sin\frac{2\pi}{n}$$

Granice ciągów

$$\lim Z_n=\lim nr^2\frac{\sin\frac{\pi}{n}}{\cos\frac{\pi}{n}}=$$

$$=\lim \frac{nr^2}{\cos\frac{\pi}{n}}\cdot\frac{\pi}{n}\cdot\frac{\sin\frac{\pi}{n}}{\frac{\pi}{n}}=$$

$$=\lim \frac{\pi r^2}{\cos\frac{\pi}{n}}\cdot\frac{\sin\frac{\pi}{n}}{\frac{\pi}{n}}=\frac{\pi r^2}{\cos 0}\cdot 1=$$

$$=\frac{\pi r^2}{1}=\pi r^2$$

$$\lim Z_n=\pi r^2$$

$$\lim W_n=\lim\frac{nr^2}{2}\sin\frac{2\pi}{n}=$$

$$\lim \frac{nr^2}{2}\cdot \frac{2\pi}{n}\cdot\frac{\sin\frac{2\pi}{n}}{\frac{2\pi}{n}}=$$

$$\lim \pi r^2\cdot\frac{\sin\frac{2\pi}{n}}{\frac{2\pi}{n}}=\pi r^2\cdot 1=\pi r^2$$

$$\lim W_n=\pi r^2$$

Wniosek

Z twierdzenia o trzech ciągach wnioskujemy, że pole koła to

$$P=\lim W_n=\lim Z_n=\pi r^2$$

Tempo zbieżności ciągów $W_n$ oraz $Z_n$

Pole powierzchni koła - tempo zbieżności ciągów

🙂

Pozdrowienia,

Mariusz Gromada

Poza Liczbami: Inne Twórcze Przestrzenie

Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury

Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury, które wykorzystują matematyczne wzory i proporcje do tworzenia estetycznych i emocjonalnych doznań. Z nieśmiałą ekscytacją przedstawiam moją pierwszą poważniejszą kompozycję, w której starałem się uchwycić te połączenia.

I Am Here – RELEARN – Mariusz Gromada (2024)
I Am Here – RELEARN – Mariusz Gromada (2024)
Deep Under – RELEARN – Mariusz Gromada (2024)
Deep Under – RELEARN – Mariusz Gromada (2024)

Scalar – zaawansowana aplikacja mobilna z silnikiem matematycznym mojego autorstwa

Twierdzenie o trzech ciągach

Twierdzenie o trzech ciągach! Ola – dzięki za cenny pomysł! Znacząco wzbogacił cykl „Matematyka w obrazkach” 🙂

Twierdzenie o trzech ciągach

Pozdrowienia,

Mariusz Gromada

Poza Liczbami: Inne Twórcze Przestrzenie

Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury

Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury, które wykorzystują matematyczne wzory i proporcje do tworzenia estetycznych i emocjonalnych doznań. Z nieśmiałą ekscytacją przedstawiam moją pierwszą poważniejszą kompozycję, w której starałem się uchwycić te połączenia.

I Am Here – RELEARN – Mariusz Gromada (2024)
I Am Here – RELEARN – Mariusz Gromada (2024)
Deep Under – RELEARN – Mariusz Gromada (2024)
Deep Under – RELEARN – Mariusz Gromada (2024)

Scalar – zaawansowana aplikacja mobilna z silnikiem matematycznym mojego autorstwa

ROC w CR - przekształcenie liniowe - wektory

Wskaźnik Giniego, który opisałem w części #7 poświęconej krzywej ROC, jest jednym z najważniejszych narzędzi wykorzystywanych w procesie oceny jakości klasyfikacji. Choć krzywa ROC jest ważna i bardzo przydatna, to z mojego doświadczenia wynika, że większość analityków woli wykreślać krzywą Captured Response. Sądzę, że wszyscy intuicyjnie czujemy, że „Gini z ROC” i „Gini z Captured Response” to to samo 🙂 Ale dlaczego tak jest? 🙂 Dziś odpowiem na to pytanie, jednocześnie wzbogacając serię „Tips & Tricks na krzywych”!

Wskaźnik Giniego z krzywej Captured Response

$$Gini=\frac{P_1}{P_1+P_2}=\frac{P_1^\prime}{P_1^\prime+P_2^\prime}$$

Krzywa Captured Response jako przekształcenie liniowe krzywej ROC

W części #8 wykazałem, że krzywą ROC i krzywą Captured Response łączy poniższa formuła.

$$X_{cr}=\Big(1-apriori\Big)\times X_{roc}+apriori\times Y_{roc}$$

$$Y_{cr}=Y_{roc}$$

Wskaźnik Giniego z krzywej Captured Response - wektory

Powyższy wzór można zapisać na bazie przekształcenia liniowego

$$\begin{bmatrix}1-apriori & apriori\\0 & 1\end{bmatrix}\times\begin{bmatrix}X_{ROC}\\Y_{ROC}\end{bmatrix}=\begin{bmatrix}X_{CR}\\Y_{CR}\end{bmatrix}$$

 opisanego macierzą przekształcenia liniowego

$$A=\begin{bmatrix}1-apriori & apriori\\0 & 1\end{bmatrix}$$

Po szczegóły odsyłam do części #8 „Captured Response = ROC x apriori”.

Wyznacznik macierzy przekształcenia liniowego i współczynnik zmiany pola powierzchni

Przekształcenie liniowe - Pole powierzchni - Wyznacznik macierzy przekształcenia

Jeśli analizujemy przekształcenie liniowe

$$Ax$$

gdzie $A$ jest macierzą przekształcenia liniowego, a $x$ wektorem, to wyznacznik

$$\text{det}(A)$$

jest współczynnikiem o jaki zmienia się pole powierzchni / objętość / miara figury / obiektu transformowanego poprzez przekształcenie liniowe $Ax$. Polecam poniższy film.

Wyznacznik macierzy przekształcenia liniowego krzywej ROC w krzywą Captured Response

$$\text{det}(A)=\text{det}\begin{bmatrix}1-apriori & apriori\\0 & 1\end{bmatrix}=1-apriori$$

Z powyższego wynika, że pole powierzchni pomiędzy przestrzenią, w której „osadzona” jest krzywa ROC, a przestrzenią „zawierającą” krzywą Captured Response, powinno się skalować poprzez współczynniki $1-apriori$. Sprawdźmy 🙂

$$P_1+P_2=\frac{1}{2}$$

Wykorzystując wzór na pole trójkąta wyznaczamy

$$P_1^\prime+P_2^\prime=\frac{1}{2}(1-apriori)$$

Zgadza się 🙂 I ostatecznie

$$\frac{P_1^\prime}{P_1^\prime+P_2^\prime}=\frac{P_1(1-apriori)}{(P_1+P2)(1-apriori)}=\frac{P_1}{P_1+P_2}$$

czyli

$$Gini=\frac{P_1}{P_1+P_2}=\frac{P_1^\prime}{P_1^\prime+P_2^\prime}$$

Jako ciekawostka – podobnie można policzyć AUROC z Captured Response:

$$AUROC=P_1+\frac{1}{2}=\frac{P_1^\prime}{1-apriori}+\frac{1}{2}$$

Pozdrowienia,

Mariusz Gromada

Poza Liczbami: Inne Twórcze Przestrzenie

Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury

Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury, które wykorzystują matematyczne wzory i proporcje do tworzenia estetycznych i emocjonalnych doznań. Z nieśmiałą ekscytacją przedstawiam moją pierwszą poważniejszą kompozycję, w której starałem się uchwycić te połączenia.

I Am Here – RELEARN – Mariusz Gromada (2024)
I Am Here – RELEARN – Mariusz Gromada (2024)
Deep Under – RELEARN – Mariusz Gromada (2024)
Deep Under – RELEARN – Mariusz Gromada (2024)

Scalar – zaawansowana aplikacja mobilna z silnikiem matematycznym mojego autorstwa

Trójkąt - Pole powierzchni

Jestem pewien, że wzór na pole powierzchni trójkąta, tj. $P=\frac{1}{2}ah$, jest znany niemal wszystkim 🙂  Dzieci, będąc we wczesnym wieku szkolnym, poznają podstawy geometrii, w tym długości obwodów i pola powierzchni figur płaskich. Jeśli interesuje cię dlaczego pole powierzchni trójkąta zależy od długości jego podstawy i wysokości na nią opadającej, to jest to wpis dla Ciebie 🙂 Jednocześnie wzbogacam cykl „Dlaczego?”. Zaczynamy!

Pole powierzchni trójkąta – wzór

Trójkąt - Pole powierzchni

Wzór na pole powierzchni trójkąta, choć prosty, to na pierwszy rzut oka nie jest zbyt intuicyjny (no może poza przypadkiem trójkąta prostokątnego). Oto, w jakiś magiczny sposób, dla każdej podstawy, iloczyny ich długości i długości wysokości na nie opadających, są sobie równe – i więcej – określą pole powierzchni ograniczonej trójkątem 🙂

$$P=\frac{ah_a}{2}=\frac{bh_b}{2}=\frac{ch_c}{2}$$

Pole powierzchni trójkąta – dowód przez animację 🙂 – przypadek 1

Przypadek 1: kiedy wysokość trójkąta „opada” na jego podstawę.

Trójkąt - pole powierzchni - przypadek 1

Pole powierzchni trójkąta – dowód przez animację 🙂 – przypadek 2

Przypadek 2: kiedy wysokość trójkąta „opada” poza jego podstawą.

Trójkąt - pole powierzchni - przypadek 2

Pole powierzchni trójkąta – dowód nieco bardziej formalny

Trójkąt prostokątny: przypadek oczywisty, nie wymaga wyprowadzenia 🙂

Trójkąt - Pole powierzchni - Trójkąt prostokątny

$$P=\frac{ab}{2}$$

Przypadek 1: kiedy wysokość trójkąta „opada” na jego podstawę.

Trójkąt - Pole powierzchni - przypadek 1

Wyprowadzenie wzoru:

$$P=P_1+P_2$$

$$2P_1+2P_2=ah$$

$$P_1+P_2=\frac{ah}{2}$$

$$P=\frac{ah}{2}$$

Przypadek 2: kiedy wysokość trójkąta „opada” poza jego podstawą.

Trójkąt - Pole powierzchni - przypadek 2

Wyprowadzenie wzoru:

$$P+P_1=P_2$$

$$P=P_2-P_1$$

$$P_1=\frac{xh}{2}$$

$$P_2=\frac{(a+x)h}{2}=\frac{ah}{2}+\frac{xh}{2}$$

$$P=P_2-P_1=\frac{ah}{2}+\frac{xh}{2}-\frac{xh}{2}=\frac{ah}{2}$$

$$P=\frac{ah}{2}$$

Koniec na dziś 🙂

Pozdrowienia,

Mariusz Gromada

Poza Liczbami: Inne Twórcze Przestrzenie

Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury

Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury, które wykorzystują matematyczne wzory i proporcje do tworzenia estetycznych i emocjonalnych doznań. Z nieśmiałą ekscytacją przedstawiam moją pierwszą poważniejszą kompozycję, w której starałem się uchwycić te połączenia.

I Am Here – RELEARN – Mariusz Gromada (2024)
I Am Here – RELEARN – Mariusz Gromada (2024)
Deep Under – RELEARN – Mariusz Gromada (2024)
Deep Under – RELEARN – Mariusz Gromada (2024)

Scalar – zaawansowana aplikacja mobilna z silnikiem matematycznym mojego autorstwa

Devil vs Evil - co było pierwsze? :-)

Cykl „Matematyka w obrazkach” – część #12 – Devil vs Evil – rozstrzygamy co było pierwsze 🙂

Devil vs Evil - co było pierwsze? :-)

Znasz odpowiedź? Wpisz w komentarzu 🙂

Pozdrowienia,

Mariusz Gromada

Poza Liczbami: Inne Twórcze Przestrzenie

Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury

Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury, które wykorzystują matematyczne wzory i proporcje do tworzenia estetycznych i emocjonalnych doznań. Z nieśmiałą ekscytacją przedstawiam moją pierwszą poważniejszą kompozycję, w której starałem się uchwycić te połączenia.

I Am Here – RELEARN – Mariusz Gromada (2024)
I Am Here – RELEARN – Mariusz Gromada (2024)
Deep Under – RELEARN – Mariusz Gromada (2024)
Deep Under – RELEARN – Mariusz Gromada (2024)

Scalar – zaawansowana aplikacja mobilna z silnikiem matematycznym mojego autorstwa

Pochodna z Captured Response to Lift nieskumulowany

W części #8 cyklu „Ocena jakości klasyfikacji” pokazałem, że ROC i Captured Response to te same krzywe, które łączy proste przekształcenie liniowe. W bieżącym odcinku #11, należącym również do serii „Tips & Tricks na krzywych”, przedstawię zależność pomiędzy Captured Response i Lift w wariantach: nieskumulowanym i skumulowanym.

!!! Uwaga: dla uproszczenia – wszędzie tam, gdzie piszę kwantyl, mam na myśli jego rząd !!!

Pochodna z Captured Response to Lift nieskumulowany

Pochodna z Captured Response to Lift nieskumulowany

Oznaczamy:

  • $N=N_1+N_0$ – liczba obiektów (np. klientów): total, z klasy „1”, z klasy”0″;
  • $\Delta q_n$ – zmiana argumentu (przyrasta kwantyl bazy), czyli przyrost % populacji;
  • $n=n_1+n_0$ – liczba obiektów składających się na przyrost $\Delta q_n$: total, z klasy „1”, z klasy”0″;
  • $\Delta q_t$ – zmiana wartości funkcji (przyrasta kwantyl targetu), czyli przyrost frakcji targetu jako % całości targetu;
  • $n_1$ – liczba klientów z klasy „1” składających się na przyrost $\Delta q_t$.
  • $\Delta q_n=\frac{n}{N}$
  • $\Delta q_t=\frac{n_1}{N_1}$

$$CR’=\frac{\Delta q_t}{\Delta q_n}$$

I wyprowadzamy 🙂

$$CR’=\frac{\Delta q_t}{\Delta q_n}=\frac{n_1}{N_1}\bigg/\frac{n}{N}=\frac{n_1}{N_1}\cdot\frac{N}{n}=\frac{n_1}{n}\cdot\frac{N}{N_1}=\frac{n_1}{n}\bigg/\frac{N_1}{N}$$

$$CR’=\frac{n_1}{n}\bigg/\frac{N_1}{N}=\frac{p(1|\Delta q_n)}{p(1)}=Lift.Niesk$$

Fajne 🙂 prawda? Lift nieskumulowany można jednoznacznie wyprowadzić z krzywej Captured Response poprzez analizę „lokalnych” przyrostów frakcji bazy $\Delta q_n$ i frakcji targetu $\Delta q_t$.

Captured Response – stosunek wartości dla badanego modelu oraz wartości dla modelu losowego to Lift skumulowany

Captured Response - stosunek wartości dla badanego modelu oraz wartości dla modelu losowego to Lift skumulowany

Oznaczamy:

  • $N=N_1+N_0$ – liczba obiektów (np. klientów): total, z klasy „1”, z klasy”0″;
  • $q_n$ – kwantyl bazy, czyli argument na osi poziomej;
  • $n=n_1+n_0$ – liczba obiektów składających się na kwantyl $q_n$: total, z klasy „1”, z klasy”0″;
  • $q_t^m$ – kwantyl targetu, czyli wartość Captured Response dla badanego modelu;
  • $q_t^l$ – kwantyl targetu, czyli wartość Captured Response dla modelu losowego;
  • $q_n=\frac{n}{N}$
  • $q_t^m=\frac{n_1}{N_1}$
  • Zauważmy, że $q_t^l=q_n=\frac{n}{N}$

$$\frac{q_t^m}{q_t^l}=\frac{n_1}{N_1}\bigg/\frac{n}{N}=\frac{n_1}{N_1}\cdot\frac{N}{n}=\frac{n_1}{n}\cdot\frac{N}{N_1}=\frac{n_1}{n}\bigg/\frac{N_1}{N}$$

$$\frac{q_t^m}{q_t^l}=\frac{n_1}{n}\bigg/\frac{N_1}{N}=\frac{p(1|q_n)}{p(1)}=Lift.Skumul$$

Kolejny fajny wniosek 🙂 , który można również łatwo uzasadnić na bazie wyżej opisanej zależności pomiędzy Captured Response i Liftem nieskumulowanym. Mianowicie wystarczy „delty liczyć” od punktu $(0,0)$ i zauważyć, że dla modelu losowego $q_t = q_n$. Pokazałem to na rysunku poniżej.

Captured Response - stosunek wartości dla badanego modelu oraz wartości dla modelu losowego to Lift skumulowany

Lift skumulowany można jednoznacznie wyprowadzić z krzywej Captured Response poprzez analizę „globalnych” przyrostów frakcji bazy $\Delta q_n$ i frakcji targetu $\Delta q_t$.

Pozdrowienia,

Mariusz Gromada

Poza Liczbami: Inne Twórcze Przestrzenie

Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury

Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury, które wykorzystują matematyczne wzory i proporcje do tworzenia estetycznych i emocjonalnych doznań. Z nieśmiałą ekscytacją przedstawiam moją pierwszą poważniejszą kompozycję, w której starałem się uchwycić te połączenia.

I Am Here – RELEARN – Mariusz Gromada (2024)
I Am Here – RELEARN – Mariusz Gromada (2024)
Deep Under – RELEARN – Mariusz Gromada (2024)
Deep Under – RELEARN – Mariusz Gromada (2024)

Scalar – zaawansowana aplikacja mobilna z silnikiem matematycznym mojego autorstwa

Model Teoretycznie Idealny - Porządek - Cut-Off - Brak błędu

Kilka kolejnych części cyklu „Ocena jakości klasyfikacji” skupi się na poradach i pewnych trickach (czyli seria „Tips & Tricks na krzywych”), które zastosowane do krzywych: Lift, Captured Response, ROC, znacząco pogłębiają ich interpretację.

!!! Uwaga: dla uproszczenia – wszędzie tam, gdzie piszę kwantyl, mam na myśli jego rząd !!!

Model teoretycznie idealny a prawdopodobieństwo a-priori

Model teoretycznie idealny to taki model, który daje najlepsze możliwe uporządkowanie – inaczej mówiąc najlepszą możliwą separację klas. Taki model nie myli się przy założeniu, że punkt odcięcia odpowiada prawdopodobieństwu a-priori. Wtedy faktycznie cała klasa pozytywna jest po jednej stronie, a cała klasa negatywna po drugiej stronie punktu cut-off.

Model Teoretycznie Idealny - Porządek - Cut-Off - Brak błędu

Przy każdym innym cut-off model teoretycznie idealny popełnia mniejszy lub większy błąd.

Model Teoretycznie Idealny - Porządek - Cut-Off - Błąd

Ile istnieje różnych modeli teoretycznie idealnych?

Liczba różnych modeli teoretycznie idealnych to funkcja liczności klasy faktycznie pozytywnej i liczności klasy faktycznie negatywnej. Liczba ta będzie iloczynem możliwych permutacji w klasie pozytywnej i możliwych permutacji w klasie negatywnej. Takie modele, z punktu widzenia klasycznej oceny jakości klasyfikacji, są nierozróżnialne (dlatego na wykresach oznaczamy tylko jeden). Sytuacja może się zmienić, jeśli, w celu lepszego uporządkowania, rozważymy dodatkowe cechy (oprócz samej przynależności do badanej klasy), takie jak: wartość klienta, oczekiwany life-time, etc…

Model teoretycznie idealny i maksymalny Lift nieskumulowany

Lift nieskumulowany to stosunek prawdopodobieństwa w przedziale bazy $\Delta q_n$ i prawdopodobieństwa a-priori (w całej bazie).

$$Lift.Nieskum=\frac{p(1|\Delta n)}{p(1)}$$

Jeśli baza jest uszeregowana malejąco względem oceny modelem, maksymalny możliwy lift nieskumulowany będzie funkcją dwuwartościową.

$$Lift.Nieskum(q)=\begin{cases}\frac{1}{apriori}&\text{dla}\quad q\leq apriori\\0&\text{dla}\quad q>apriori\end{cases}$$

$q$ – kwantyl bazy (malejąco względem oceny modelem)

Model Teoretycznie Idealny - Lift Nieskumulowany

Model teoretycznie idealny i maksymalny Lift skumulowany

Również w przypadku skumulowanym, będąc „na lewo od a-priori”, maksymalny możliwy lift skumulowany wynosi $\frac{1}{apriori}$ (cały czas mamy do dyspozycji „1-dynki”). Jeśli „cut-off przekroczy kwantyl a-priori”, klasyfikacja pozytywna zaczyna być „zaśmiecana” frakcją False-Positive, gdyż nie ma już „1-dynek” – co wynika z najlepszego możliwego porządku (model teoretycznie idealny) – tzn. wszystkie obiekty z klasy faktycznie pozytywnej znajdują się w kwantylach z przedziału $[0,apriori$$.

$$Lift.Skum(q)=\begin{cases}\frac{1}{apriori}&\text{dla}\quad q\leq apriori\\\frac{1}{q}&\text{dla}\quad q>apriori\end{cases}$$

$q$ – kwantyl bazy (malejąco względem oceny modelem)

Dlaczego $\frac{1}{q}$? Przyjmijmy $q>apriori$, wtedy

  • $q$ to rozmiar „bazy”
  • $apriori$ to rozmiar klasy faktycznie pozytywnej w rozważanej „bazie”

$$p\big(1\big|~[0,q]~\big)=\frac{apriori}{q}$$

$$Lift.Skum(q)=\frac{p\big(1\big|~[0,q]~\big)}{p(1)}=\frac{apriori}{q\times apriori}=\frac{1}{q}$$

Model Teoretycznie Idealny - Lift Skumulowany

Model teoretycznie idealny i maksymalny Captured Response

Dysponując najlepszym możliwym uporządkowaniem krzywa Captured Response liniowo rośnie dla argumentów „na lewo” od apriori – każdy dodany obiekt, to klasa faktycznie pozytywna. W punkcie „apriori” całość targetu jest już pokryta – zatem wartość krzywej to 100%.

$$Capt.Resp(q)=\begin{cases}\frac{q}{apriori}&\text{dla}\quad q\leq apriori\\1&\text{dla}\quad q>apriori\end{cases}$$

$q$ – kwantyl bazy (malejąco względem oceny modelem)

Model Teoretycznie Idealny - Captured Response

Model teoretycznie idealny i ROC

  • Jeśli cut-off jest „na lewo” od a-priori: pokrywamy wyłącznie elementy klasy faktycznie pozytywnej, zatem rośnie wyłącznie TPR, przy zerowym FPR.
  • Dla cut-off odpowiadającego a-priori: pokryto 100% klasy faktycznie pozytywnej (TPR = 100%), jednocześnie nie popełniając żadnego błędu (FPR = 0%).
  • Dla cut-off większego od a-priori: TPR już wcześniej osiągnęło 100%, teraz klasyfikując pozytywnie popełniamy coraz większy błąd – tzn. FPR zaczyna rosnąć.
  • Dla cut-off = 1: pokryliśmy całość klasy faktycznie pozytywnej (TPR=100%), jednak w tym samym kroku wszelkie obiekty faktycznie negatywne zaliczyliśmy do klasy pozytywnej (FPR=100%).

Model Teoretycznie Idealny - ROC

„Przestrzeń na model” – czyli sens budowy modelu

  • Dla dużych a-priori (np. 50-60%) przestrzeń na model (tzn. możliwy do osiągnięcia lift) jest bardzo mała. W takich sytuacjach należy najpierw zadać sobie pytanie co chcemy osiągnąć, czym jest target, czy nie istnieją proste reguły biznesowe odpowiadające naszym potrzebom? Duże a-priori nie jest przypadkiem abstrakcyjnym – szereg pytań dotyczy cech / zdarzeń bardzo częstych w bazach / populacjach, np: czy rodzina ma dziecko?, czy ktoś posiada samochód?, etc..
  • Małe a-priori (np. kilka promili) daje bardzo dużą przestrzeń na model (typowo duży osiągany lift), ale należy pamiętać, że 5 razy 0 daje 0!! Przykładowa kalkulacja:
    • a-priori = 0.5%
    • lift (na którymś niskim centylu) = 10
    • wtedy prawdopodobieństwo targetu na bazie klasyfikowanej pozytywnie = 0.5% * 10 = 5%
    • wtedy w 95% przypadkach mylimy się – owszem możemy pokryć sporą część targetu, ale sami sobie odpowiedzcie czy nieprawidłowy komunikat do 95% grupy ma sens?
  • Pośrednie a-priori (kilka – kilkanaście procent) – sytuacja optymalna 🙂

Pozdrowienia,

Mariusz Gromada

Poza Liczbami: Inne Twórcze Przestrzenie

Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury

Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury, które wykorzystują matematyczne wzory i proporcje do tworzenia estetycznych i emocjonalnych doznań. Z nieśmiałą ekscytacją przedstawiam moją pierwszą poważniejszą kompozycję, w której starałem się uchwycić te połączenia.

I Am Here – RELEARN – Mariusz Gromada (2024)
I Am Here – RELEARN – Mariusz Gromada (2024)
Deep Under – RELEARN – Mariusz Gromada (2024)
Deep Under – RELEARN – Mariusz Gromada (2024)

Scalar – zaawansowana aplikacja mobilna z silnikiem matematycznym mojego autorstwa

Get real! Be rational! PI & i conversation :-)

Cykl „Matematyka w obrazkach” – część #11 – przydatne argumenty w dyskusji 🙂

Get real! Be rational! PI & i conversation :-)

Pozdrowienia,
Mariusz Gromada

Poza Liczbami: Inne Twórcze Przestrzenie

Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury

Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury, które wykorzystują matematyczne wzory i proporcje do tworzenia estetycznych i emocjonalnych doznań. Z nieśmiałą ekscytacją przedstawiam moją pierwszą poważniejszą kompozycję, w której starałem się uchwycić te połączenia.

I Am Here – RELEARN – Mariusz Gromada (2024)
I Am Here – RELEARN – Mariusz Gromada (2024)
Deep Under – RELEARN – Mariusz Gromada (2024)
Deep Under – RELEARN – Mariusz Gromada (2024)

Scalar – zaawansowana aplikacja mobilna z silnikiem matematycznym mojego autorstwa

Tarcze estymacji prawdopodobieństwa - schemat

Właśnie czytasz część #9 cyklu „Ocena jakości klasyfikacji” – a to oznacza, że posiadasz już sporą wiedzę – i masz ochotę na więcej – gratuluję! 🙂

Korelacja rangowa … czy to wystarczy?

W częściach 1-8 skupiałem się na analizie korelacji rangowej. W tym przypadku korelacja rangowa odpowiada na pytanie „jak dobrze uporządkowany jest target w zależności od oceny modelem” – tzn. jak silnie monotoniczna jest zależności pomiędzy score i targetem? Innymi słowy – czy wraz ze wzrostem score, rośnie frakcja True-Positive, i jak silny jest to wzrost? Krzywa lift, czy Captured Response, doskonale to obrazują. Jednak to nie wszystko … W wielu przypadkach niezbędne jest prawidłowe oszacowanie prawdopodobieństwa z jakim zaobserwujemy klasę pozytywną.

Tarcze estymacji prawdopodobieństwa - schemat

Ocena estymacji prawdopodobieństwa – co to?

Załóżmy, że określoną grupę klientów podzieliśmy na dane trenujące i uczące oraz, że na próbie uczącej przygotowaliśmy model predykcyjny szacujący prawdopodobieństwo „bycia klasą pozytywną”. Przyjmijmy, że dla pewnego klienta x model zwrócił prawdopodobieństwo 0.3. W tym przypadku wskaźnik 0.3 oznacza, że np. dla 100 klientów, o tych samych cechach, spodziewamy się około 30 z „klasy pozytywnej” oraz około 70 z „klasy negatywnej”. Ocena estymacji prawdopodobieństwa to weryfikacja na ile możemy ufać oszacowaniu, tutaj 30 vs 70.

W ogólności – chodzi o stwierdzenie czy estymator (czyli nasz model) jest nieobciążony (czyli wolny od błędu systematycznego), a jeżeli jest obciążony, to na ile i w jakich przypadkach. Statystyka matematyczna dostarcza szeregu różnych wskaźników wyznaczających błąd oszacowania dla zmiennej ciągłej – np. błąd średnio-kwadratowy – w tym tekście nie będę się na nich skupiał. Nasz przypadek jest mniej ogólny, a i samej weryfikacji najwygodniej dokonać „organoleptycznie” – tzn. metodą wizualną w wielu krokach 🙂

Kiedy oceniać jakość estymacji prawdopodobieństwa?

Generalnie zawsze! Często same techniki modelowania optymalizują prawdopodobieństwo – np. regresja logistyczna wykorzystująca metodę największej wiarygodności – tu konieczność badania jest oczywista. Inne metody, takie jak drzewa decyzyjne, wraz ze wzrostem drzewa, starają się zmniejszyć zmienność klas w węzłach potomkach / liściach – tu nadal możemy ocenić finalne prawdopodobieństwo – np. na bazie rozkładu klas (o ile liczności są odpowiednio duże). Zasada jest taka – ocena prawdopodobieństwa daje zawsze dodatkową cenną informację w procesie weryfikacji jakości modelu! Jest jednak kilka szczególnych przypadków, kiedy ocena poprawności prawdopodobieństwa jest absolutnie konieczna:

  • Model będzie stosowany w wyznaczaniu wartości oczekiwanych (np. oczekiwany przychód).
  • Kwestie regulacyjne / modele ryzyka kredytowego  (np. modele PD – Probability Default).
  • Modele Anti-Fraud.
  • Modele churn (np. oczekiwana wartość utracona).
  • Modele up-lift (np. efekt inkrementalny na bazie różnicy dwóch modeli) – o tym opowiemy kiedyś w szczegółach.
  • Rekomendatory na bazie „głosowania” modelami propensity (modelami skłonności do skorzystania z produktu / usługi).
  • I wiele innych …

Tarcza prawdopodobieństwa – typowe sytuacje w praktyce

Tarcza prawdopodobieństwa – nazwa moja, nie szukajcie po Wikipedii 🙂 – to ciekawe i proste narzędzie obrazujące schematycznie (w dalszej części również praktycznie) typowe przypadki, na jakie z pewnością natkniecie się w pracy z rzeczywistymi modelami. Czasami jeden obraz wart jest znacznie więcej niż potok słów – zatem zaczynamy.

Silny model – schemat

Tarcze estymacji prawdopodobieństwa - model słaby

  • Przypadek 1: Silny model z dobrą estymacją prawdopodobieństwa

Schemat obrazuje sytuację, kiedy model trafia „w punkt” – czyli powtarzalnie i precyzyjnie odróżniany jest „cel” od reszty „tarczy”. Świadczy to o wysokiej separacji klas (klasa pozytywna vs klasa negatywna), spodziewany wysoki indeks Giniego, jak też oczekiwana dobra jakość estymacji prawdopodobieństwa. Na schemacie „centrum” jest tym miejscem, w które trafia model.

Akcja: Model gotowy do wykorzystania.

  • Przypadek 2: Silny model z obciążoną estymacją prawdopodobieństwa

Tym razem schemat przedstawia model o wysokim skupieniu – czyli mamy dużą powtarzalność wyników wraz z ich skupieniem, natomiast samo skupienie jest przesunięte w stosunku do punktu środkowego. Interpretacja – mamy do czynienia z silną separacją klas (wysoki indeks Giniego), natomiast szacowanie prawdopodobieństwa obarczone jest systematycznym błędem (obciążeniem).

Akcja: Model wymaga kalibracji, może być warunkowo stosowany w sytuacjach, kiedy opieramy się wyłącznie na korelacji rangowej.

Model z siłą predykcyjną w ograniczeniu do podgrup – schemat

Tarcze estymacji prawdopodobieństwa - przypadek mieszany

  • Przypadek 1: Silny model w ograniczeniu do podgrup

Sytuacja nieco bardziej złożona. Model, jako całość, nie jest zbyt dobry, natomiast w ograniczeniu do pewnych segmentów (np. klient „młody”, klient „zamożny”, etc…) separacja klas jest wysoka. Niestety, w tych segmentach, estymacja prawdopodobieństwa jest obarczona błędem systematycznym, co skutkuje niską siłą modelu dla całej populacji.

Akcja: Model wymaga dalszych prac, typowo niezbędne jest przygotowanie osobnych modeli dla wskazanych segmentów, następnie połączenie ich w całość.

  • Przypadek 2: Silny model wyłącznie dla wybranych segmentów

Podobnie jak wyżej, z tą różnicą, że istnieją podgrupy, w których model traci siłę separacji klas.

Akcja: Model wymaga dalszych prac, być może został popełniony błąd w kodzie i/lub w przetwarzaniu danych. Sprawdź cały eksperyment.

Słaby model – schemat

Tarcze estymacji prawdopodobieństwa - model słaby

„Model strzela na oślep”, trafienia są nieprzewidywalne, nie ma skupienia. Interpretacja – brak separacji klas, indeks Giniego bardzo niski. Samo prawdopodobieństwo może być nieobciążone, tzn. średnia może zgadzać się z oczekiwanym a-priori.

Akcja: Zdecydowanie sytuacja negatywna, należy powtórzyć całość eksperymentu – prawdopodobnie błąd w kodzie, błąd w danych, błąd w założeniach, ewentualnie (choć mniej prawdopodobne) zmienne nie posiadają siły predykcyjnej.

Tarcza prawdopodobieństwa – praktyczna realizacja

Wizualizacja tarczy, aby ocena mogła być dokonana wiarygodnie,  wymaga odpowiedniej liczby „strzałów”. Proponuję stosować wykres zawierający 100 punktów, każdy dla osobnego centyla score (przy założeniu, że mamy odpowiednio dużo danych wejściowych).

Kroki:

  • Dane testowe (osobno uczące) dzielimy na 100 grup, gdzie każda grupa to centyl względem rosnącej wartości szacowanego prawdopodobieństwa (score).
  • W każdej grupie wyznaczamy frakcję klasy pozytywnej.
  • W każdej grupie wyznaczamy średnie estymowane prawdopodobieństwo (średni score).
  • Wykres:
    • oś pozioma „X”: frakcja klasy pozytywnej
    • oś pionowa „Y” średni score.

Praktyczna Realizacja Tarczy Prawdopodobieństwa

  • $TR_i$ – target rate w grupie „i”
  • $P_i$ – estymowane prawdopodobieństwo w grupie „i”

Interpretacja:

  • Model idealny znajduje się na prostej y = x (tzn. brak błędu estymacji prawdopodobieństwa).
  • Model praktycznie dobry powinien dawać wyniki „w pobliżu” prostej y = x, przy czym „wahania pod / nad prostą” powinny charakteryzować się losowością, co świadczy o braku obciążenia.
  • Przestrzeń nad prostą y = x to obszar, gdzie model zawyża prawdopodobieństwo.
  • Przestrzeń pod prostą y = x to obszar, gdzie model zaniża prawdopodobieństwo.

Typowe proces oceny jakości estymacji prawdopodobieństwa

  1. Ocena dla całej populacji: średni score vs a-priori / target rate całej populacji.
  2. Ocena dla głównych segmentów: jeśli pracujemy na rzeczywistych obiektach (np. zbiór klientów) typowo dysponujemy szeregiem łatwych w interpretacji cech, które generują naturalne segmenty – będą to np.: wiek, płeć, miejsce zamieszkania (populacja), posiadane produkty, klient zamożny, klient indywidualny, i wiele innych. Często model szacuje prawidłowe prawdopodobieństwo dla całej populacji, niestety myląc się w podgrupach.
  3. Ocena na bazie „tarczy prawdopodobieństwa”:  tym razem zadajemy pytanie czy błąd estymacji zależy od wartości score? Idealna sytuacja jest tak, że nie zależy, tzn. że błąd pojawia się losowo. Score jest wypadkową szeregu zmiennych, więc pośrednio pokazujemy, że błąd zależy / nie zależy od każdej ze zmiennych osobno.

Przykłady

Przykład 1: Estymacja silnie zawyżona w segmentach wysokiego prawdopodobieństwa (wysokiej skłonności)

Tarcza Prawdopodobieństwa - Przykład 1

Przykład 2: Umiarkowane zawyżenie w segmentach niskiego prawdopodobieństwa

Tarcza Prawdopodobieństwa - Przykład 2

Przykład 3: Widoczne 3 segmenty z obciążeniem: 1. dość istotne zawyżenie, 2. umiarkowane zawyżenie, 3. umiarkowane zaniżenie

Tarcza Prawdopodobieństwa - Przykład 3

Przykład 4: Całkiem niezły model

Tarcza Prawdopodobieństwa - Przykład 4

Pozdrowienia,

Mariusz Gromada

Poza Liczbami: Inne Twórcze Przestrzenie

Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury

Matematyka i muzyka są ściśle powiązane przez rytm, harmonię i struktury, które wykorzystują matematyczne wzory i proporcje do tworzenia estetycznych i emocjonalnych doznań. Z nieśmiałą ekscytacją przedstawiam moją pierwszą poważniejszą kompozycję, w której starałem się uchwycić te połączenia.

I Am Here – RELEARN – Mariusz Gromada (2024)
I Am Here – RELEARN – Mariusz Gromada (2024)
Deep Under – RELEARN – Mariusz Gromada (2024)
Deep Under – RELEARN – Mariusz Gromada (2024)

Scalar – zaawansowana aplikacja mobilna z silnikiem matematycznym mojego autorstwa